

SqlServer数据库索引重建优化方案

目录
一、前言	1
二、原理介绍	1
（一）高度碎片化的索引	1
（二）失效的统计信息	1
（三）索引重建的必要性	2
（四）性能提升	2
三、方案介绍	3
（一）方案概述	3
1）全库索引重建	3
2）全库索引分批重建	3
3）部分索引碎片率高的表索引重建	3
4）部分业务表的索引重建	3
（二）操作步骤	4
1)全库索引重建操作	4
2)全库索引分批重建操作	13
3)部分碎片率高的表索引重建操作	19
4)部分业务表索引重建操作	25
（三）脚本参数设置	28
索引重建脚本参数设置	28
索引重建监控脚本参数设置	29
四、注意事项	29
（一）作业执行时间选择	29
（二）方案选择	29
方案1：每天全库索引重建	29
方案2：每周全库索引重建	30
方案3：每周全库索引重建+每天部分碎片率高的表索引重建	30
方案4：每天全库索引分批重建	30
五、相关查询sql	30
（一）查询全库表的索引碎片率状况（碎片率从高到低进行排序）	30
（二）查询单个表的索引碎片率	31
（三）查询数据库当前阻塞信息	31

[bookmark: _Toc175745829][bookmark: _Toc176368497]一、前言
本文档主要用于：金蝶云星空产品在使用SqlServer数据库过程中，确保数据库表索引保持健康状态，从而使数据库持续保持良好性能，解决运维过程中可能出现的数据库瓶颈和问题。

[bookmark: _Toc175745830][bookmark: _Toc176368498]二、原理介绍
在数据库管理系统(DBMS)的运维实践中，索引的健康状况直接影响着数据检索的速度和效率。当索引碎片化程度高或统计信息失效时，数据库的性能将受到显著影响，此时进行索引重建便显得尤为必要。以下是对这种情况的一些介绍：
[bookmark: _Toc175745831][bookmark: _Toc176368499]（一）高度碎片化的索引
索引碎片化通常源于频繁的数据操作，如插入、更新和删除。当这些操作发生时，索引的物理结构会发生变化，导致索引项散布在不同的数据页上，而非连续存储。高度碎片化的索引表现为：
· 数据页的未充分利用：在数据页中留下大量未使用的空间，这不仅浪费存储空间，而且影响索引的查找效率。
· I/O操作增加：数据库引擎在搜索数据时，需要访问更多的数据页，增加了磁盘I/O次数，从而降低了查询性能。
· 存储成本上升：额外的存储空间被无效率地占用，增加了总体的存储成本。
[bookmark: _Toc175745832][bookmark: _Toc176368500]（二）失效的统计信息
数据库统计信息用于描述数据分布情况，帮助查询优化器选择最有效的查询计划。当索引高度碎片化时，统计信息可能变得过时或不再准确，具体表现如下：
· 数据分布的错误估计：统计信息可能不再反映数据的真实分布，如列值的频率、行数等，导致查询优化器基于错误的信息作出计划。
· 查询计划选择不当：基于不准确的统计信息，查询优化器可能会选择成本较高的执行路径，如全表扫描而非索引扫描，导致查询性能下降。
· 资源浪费：不当的查询计划可能导致不必要的CPU和I/O资源消耗，影响系统整体的响应时间和吞吐量。
[bookmark: _Toc175745833][bookmark: _Toc176368501]（三）索引重建的必要性
面对高度碎片化的索引或失效的统计信息，索引重建成为了恢复数据库性能的关键步骤。索引重建涉及以下过程：
· 删除现有索引：首先，原有的索引将被删除，以清除所有碎片化的数据页。
· 创建新索引：随后，根据当前的数据分布情况，创建一个新的、结构优化的索引。
· 更新统计信息：在索引重建后，统计信息应被重新收集和更新，以确保其准确反映新的数据分布情况。
[bookmark: _Toc175745834][image:]
参考链接:https://learn.microsoft.com/zh-cn/sql/relational-databases/indexes/reorganize-and-rebuild-indexes?view=sql-server-ver16
[bookmark: _Toc176368502]（四）性能提升
索引重建带来的好处包括：
· 减少I/O操作：新索引的紧凑结构减少了访问数据所需的磁盘I/O次数。
· 提高查询效率：优化后的索引和准确的统计信息使得查询优化器能够选择更合适的执行计划，从而加快查询速度。
· 节省存储空间：消除碎片后，存储空间得到更有效的利用，降低了存储成本。

[bookmark: _Toc175745835][bookmark: _Toc176368503]三、方案介绍
[bookmark: _Toc175745836][bookmark: _Toc176368504]（一）方案概述
索引重建执行耗时和账套大小、硬件资源、索引的碎片率等因素相关，需要几十分钟至数小时的时间,建议索引重建优化选择在系统空闲时间段进行。
星空针对数据库索引重建目前主要有以下四种场景(所有场景均支持严格控制执行时间)：
[bookmark: _Toc176368505]1）全库索引重建
对全库碎片率大于5%的表索引进行重建(按照索引碎片率从高到低的顺序执行)。
使用场景：所有星空账套都建议配置全库索引重建的数据库作业 (如每周一次或两次，取决于业务系统的空闲时间)、并在补丁升级后、结账前手工执行。

[bookmark: _Toc176368506]2）全库索引分批重建
对全库碎片率大于5%的表索引进行分批重建
使用场景：同全库索引重建的使用场景类似，区别在于：
1.全库索引重建如果在指定时间内未完成全部表的索引重建，下次执行时会重新按照索引碎片率从高到底的顺序对索引进行重建。
2.全库索引分批重建每次会把需要进行索引重建的表按照索引碎片率从高到低的顺序记录下来，依次进行索引重建。
如果一次未重建完成，下次会继续之前的位置进行索引重建，直到所有表都重建完成。
举例：假设全库需要进行索引重建操作的表有1000张，将这1000张表全部做完索引重建需要5个小时，限制索引重建作业的执行时间只有1个小时
假设本次执行1个小时完成了200个表的索引重建，在进行下一次索引重建时，二者区别如下：
全库索引重建：会重新查询全库碎片率大于5%的表，按照索引碎片率从高到低的顺序执行重建
全库索引分批重建：会继续从第201个表开始进行索引重建
[bookmark: _Toc176368507]3）部分索引碎片率高的表索引重建
对于碎片率大于30%的表索引进行重建。
使用场景：对于部分业务频繁操作的表，可能全库索引重建的作业并不能满足要求（即在下一次全库索引重建作业执行前这部分表的索引碎片率已经很高导致部分业务卡顿），对于这部分索引碎片率增长较快的表，需要配置执行频率更高的作业(如每天一次)
[bookmark: _Toc176368508]4）部分业务表的索引重建
根据客户实际业务情况，梳理出一些频繁操作的业务表进行索引重建。
使用场景：同部分索引碎片率高的表索引重建的使用场景类似，如现场运维明确知道业务频繁操作的具体是哪些表，可配置单独对这部分表进行索引重建的作业(如每天一次)

[bookmark: _Toc175745837][bookmark: _Toc176368509]（二）操作步骤
推荐采用SqlServer作业定期自动执行的方式进行索引重建，减少人工运维的工作量，下面分别介绍一下前面介绍的4种数据库索引重建场景如何配置对应的SqlServer作业(作业中配置的索引重建脚本也可在数据库中手工执行)
[bookmark: _Toc176368510]1)全库索引重建操作
 以每周日凌晨2点执行、指定且排除T_BAS_OPERATELOGBK,T_BAS_OPERATELOGBK_S这两个表不进行索引重建为例介绍如何配置对应的SqlServer作业

配置第一个作业：全库索引重建优化作业
[image:]
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
[image:]

配置第二个作业：全库索引重建监控作业
[image:]
[image:]

[image:]

索引重建作业的执行时间是凌晨2点,脚本默认控制最长执行时间为6个小时，将索引重建监控作业的执行时间设置为8点10分，如果此时索引重建作业仍在执行说明可能出现了阻塞，监控脚本就会kill重建索引作业对应的会话。
[image:]
至此就完成了全库索引重建作业和全库索引重建监控作业的配置。
[bookmark: _Toc176368511]2)全库索引分批重建操作
 以每天凌晨2点执行、控制执行时间为1小时、且排除T_BAS_OPERATELOGBK,T_BAS_OPERATELOGBK_S这两个表不进行索引重建为例介绍如何配置对应的SqlServer作业
全库索引重建作业和全库索引分批重建作业根据实际情况配置其一即可，无需同时配置
配置第一个作业：全库索引分批重建作业
[image:]

[image:]

[image:]
[image:]

配置第二个作业：全库索引分批重建监控作业
[image:]

[image:]

[image:]
索引分批重建作业的执行时间是凌晨2点,脚本控制最长执行时间为1个小时，将索引分批重建监控作业的执行时间设置为3点10分，如果此时索引分批重建作业仍在执行说明可能出现了阻塞，监控脚本就会kill索引分批重建作业对应的会话。
[image:]
至此就完成了全库索引分批重建作业和全库索引分批重建监控作业的配置。

[bookmark: _Toc176368512]3)部分碎片率高的表索引重建操作
以每天凌晨0点执行（如果已经配置了全库索引重建作业，注意与全库索引重建作业的执行时间错开）、排除T_BAS_OPERATELOGBK,T_BAS_OPERATELOGBK_S这两个表不进行索引重建、对碎片率大于30%的索引进行重建为例介绍如何配置对应的SqlServer作业

配置第一个作业：碎片率高的索引重建优化作业
[image:]

[image:]

[image:]
[image:]

配置第二个作业：碎片率高的索引重建监控作业
[image:]
[image:]

[image:]
索引重建作业的执行时间是凌晨0点,脚本默认控制最长执行时间为1个小时，将索引重建监控作业的执行时间设置1点10分，如果此时索引重建作业仍在执行说明可能出现了阻塞，监控脚本就会kill重建索引作业对应的会话。

[image:]
至此就完成了碎片率高的索引重建作业和碎片率高的索引重建监控作业的配置。
[bookmark: _Toc176368513]4)部分业务表索引重建操作
以每天凌晨0点执行（如果已经配置了全库索引重建作业，注意与全库索引重建作业的执行时间错开）、对指定表T_META_OBJECTTYPE、T_META_CONVERTRULE、T_SEC_FUNCPERMISSIONENTRY、T_BAS_NETWORKCTRLMUTEX、T_BOS_INSTALLEDITEM的索引进行重建为例介绍如何配置对应的SqlServer作业
部分业务表索引重建作业和部分碎片率高的表索引重建作业根据实际情况配置其一即可，无需同时配置。

配置第一个作业：部分业务表索引重建优化作业
[image:]

[image:]

[image:]
[image:]

配置第二个作业：部分业务表索引重建监控作业
同碎片率高的索引重建监控作业配置一致

[bookmark: _Toc176368514]（三）脚本参数设置
[bookmark: _Toc176368515]索引重建脚本参数设置
@worktime
全库索引重建、全库索引分批重建、部分碎片率高的表索引重建、部分业务表索引重建脚本下列参数的作用及配置方式均相同

允许脚本执行的工作时间，单位为分钟，全库索引重建和全库索引分批重建脚本的默认值为360，碎片率高的表索引重建脚本和部分业务表索引重建脚本的默认值为60（0表示不限制工作时间，直至所有符合条件的索引重建完成）
脚本对符合条件的每个表的索引进行索引重建操作前都会判断当前执行时间是否超过了@worktime指定的工作时间，如果超过了则会结束任务，不进行后续表索引的重建操作了。
@exectabs
人工指定对某些表进行重建索引，格式为't1,t2',默认为''
@noexectabs
人工指定对某些表不进行重建索引，格式为't3,t4',默认为''
脚本已自动对临时表、种子表、系统表进行了排除，除此之外，对于一些日志表、备份表等占用空间大，业务操作频率低的表可以排除掉不进行索引重建，缩短索引重建脚本的执行时间
如需要设置此参数，可以使用下面文件中的sql语句查询出当前数据库占用空间最大的top50的表,然后将其中的日志表、备份表的表名设置在@noexectabs参数中

[bookmark: _Toc176368516]索引重建监控脚本参数设置
全库索引重建监控、全库索引分批重建监控、碎片率高的表索引重建监控、部分业务表索引重建监控下列参数的作用及配置方式均相同，可根据实际使用场景选择是否需要调整
@worktime
允许索引重建脚本执行的工作时间，单位为分钟,要与对应索引重建优化脚本中的@worktime保持一致，监控脚本执行时，会查询当前数据库中执行时间超过@worktime且正在执行DBCC命令的请求，并将对应的会话kill

[bookmark: _Toc176368517]四、注意事项
[bookmark: _Toc176368518]（一）作业执行时间选择
前面方案概述中介绍了索引重建需要在系统空闲时间段执行，那么什么是系统空闲时间段呢？
对于星空账套来说，系统空闲时间是指：
1. 没有业务操作
2. 没有星空webapi调用
3. 没有重要业务的星空执行计划运行
4. 没有其他数据库作业执行

如果索引重建作业执行期间存在上述操作，可能会导致系统阻塞、死锁、业务执行失败等问题

[bookmark: _Toc176368519]（二）方案选择
前面方案概述中共介绍了4种不同的索引重建场景，那么如何根据实际的业务情况选择合适的索引重建方案呢？下面将重点介绍一下方案的选择思路

[bookmark: _Toc176368520]方案1：每天全库索引重建
如果系统每天都有2小时以上的空闲时间，则可将全库索引重建作业配置为每天执行
此方案最优、效果最好、强烈推荐。
[bookmark: _Toc176368521]方案2：每周全库索引重建
如果系统每周有1到2天有2小时以上的空闲时间，则可将全库索引重建作业配置为每周执行1次或2次。
[bookmark: _Toc176368522]方案3：每周全库索引重建+每天部分碎片率高的表索引重建
配置了方案2后，由于一些业务频繁操作的表的索引碎片率增长较快，在下周全库索引重建作业执行前已经出现部分业务功能的卡顿，可以在方案2的基础上，再配置每天部分碎片率高的表索引重建作业。

[bookmark: _Toc176368523]方案4：每天全库索引分批重建
如果系统每天空闲时间不足2小时，则可配置每天全库索引分批重建作业，在几天内完成一次全库索引重建操作
[bookmark: _Toc175745838][bookmark: _Toc176368524]五、相关查询sql
[bookmark: _Toc176368525]（一）查询全库表的索引碎片率状况（碎片率从高到低进行排序）
	SELECT *
FROM (SELECT SO.NAME AS object_name,
 SI.NAME AS index_name,
 IPS.avg_fragmentation_in_percent,
 (page_count * 8.0 / 1024.0) AS size_in_mB,
 si.type_desc
 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS
 INNER JOIN sys.indexes SI
 ON SI.index_id = IPS.index_id
 INNER JOIN sys.objects SO
 ON SO.object_id = SI.object_id
 AND IPS.object_id = SO.object_id
 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'
 AND index_level = 0
 AND SI.NAME IS NOT NULL
 AND SO.is_ms_shipped = 0) t
ORDER BY t.avg_fragmentation_in_percent DESC

[bookmark: _Toc176368526]（二）查询单个表的索引碎片率
	SELECT SO.NAME AS object_name,
 SI.NAME AS index_name,
 IPS.avg_fragmentation_in_percent,
 (page_count * 8.0 / 1024.0) AS size_in_mB,
 si.type_desc
FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS
 INNER JOIN sys.indexes SI
 ON SI.index_id = IPS.index_id
 INNER JOIN sys.objects SO
 ON SO.object_id = SI.object_id
 AND IPS.object_id = SO.object_id
WHERE alloc_unit_type_desc = 'IN_ROW_DATA'
 AND index_level = 0
 AND SI.NAME IS NOT NULL
 AND SO.is_ms_shipped = 0
 AND so.name = 'T_META_OBJECTTYPE_L'

[bookmark: _Toc176368527]（三）查询数据库当前阻塞信息
	SELECT t1.resource_type AS [锁类型],
 Db_name(resource_database_id) AS [数据库名],
 t1.resource_associated_entity_id AS [阻塞资源对象],
 t1.resource_description AS [资源描述信息],
 t1.request_mode AS [请求的锁],
 t1.request_session_id AS [等待会话],
 t2.wait_duration_ms AS [等待时间],
 (SELECT [text]
 FROM sys.dm_exec_requests AS r WITH (NOLOCK)
 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle])
 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的批SQL],
 (SELECT Substring(qt.[text], r.statement_start_offset / 2, (CASE
 WHEN r.statement_end_offset = -1 THEN Len(CONVERT(NVARCHAR(max), qt.[text])) * 2
 ELSE r.statement_end_offset
 END) / 2)
 FROM sys.dm_exec_requests AS r WITH (NOLOCK)
 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle]) AS qt
 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的SQL],
 t2.blocking_session_id AS [阻塞会话],
 (SELECT c.client_net_address
 FROM sys.dm_exec_connections AS c WITH (NOLOCK)
[bookmark: _GoBack] WHERE c.session_id = t2.blocking_session_id) AS [阻塞会话客户端IP],
 (SELECT s.program_name
 FROM sys.dm_exec_sessions AS s WITH (NOLOCK)
 WHERE s.session_id = t2.blocking_session_id) AS [阻塞会话连接方式],
 (SELECT c.connect_time
 FROM sys.dm_exec_connections AS c WITH (NOLOCK)
 WHERE c.session_id = t2.blocking_session_id) AS [阻塞会话连接创建时间],
 (SELECT [text]
 FROM sys.sysprocesses AS p
 CROSS APPLY sys.Dm_exec_sql_text(p.[sql_handle])
 WHERE p.spid = t2.blocking_session_id) AS [阻塞会话执行的批SQL],
 Getdate()
FROM sys.dm_tran_locks AS t1 WITH (NOLOCK)
 INNER JOIN sys.dm_os_waiting_tasks AS t2 WITH (NOLOCK)
 ON t1.lock_owner_address = t2.resource_address

1
image3.png
R | HEPERES

Microsoft BN B BHRAINTERS 4HrRES:

TERERS 4B E A TIFRE.
GEENEANERENEFS N T ERBNESRSERIE. TBIETEEER A/B I
AR YRR S IOERE.

MRAPENEMEFS I 2RBMRE, B SEBRNENSIHEE. RHETRESREEUN
2F, EXHIBRT, M\T BB LA (H=2ABE) EREMRS|, fash
EENTRITES S, EEREFELRITER, ROJBEHRERF WITH SAUPLE ... PERCENT 5%

WITH FULLSCAN TJIRSFHER (XMMERHAFER) .
FEE RS R RESE, LR s s e miae, e |
TR AR e RS A R AR neE, N A e s,)

B

2, EFARNENERRY NENEEREERSERS BT, XH A R4 AR
BN EESNERRA,
B TR /A EAN RS BN KRR, (R SRS R, FEREVUEE

EIRITHR, SFNEREENFRTIREDE, HEL TR RSIREIRE
BEETE4.
NRCHETEHFRS IHETESHEHSRERE, WESRERRENINR (NRFEXFRET

BR) WHTHER TR v

image4.png
%2 Solution’ - Microsoft SQL Server Management Studio (ci+q p - B x
P #80 WEY MEE IAD BOW W
e~ B-v-u Flammay AQRRR| -Q - g @exectabs -

® k3clouddb (SQL Server 15020005 -
nEE

Always On B
2]
ration Services B

BB
1 SIS (RUERSE) ADF (3)

3 Xevent

image5.png
TwE ~ O %

28I(C) Rz (4]
HEA(D)

BRE

image6.png
TwE ~ O %

TALERSIED
Ex E=)

FaER(E)

et

Ea

image7.png
FRERE)
ETHEERIIERAN

A2)

Transact-SAL I (1-5aL) 2
ESHE
EEESKE | #mE0) AIszu20711192108
oY) [DECLARE dncssege VARCHAR(300) ~

DECIARE Srimans SISINE |

DL S e

0 DECARE atapbacintine

T s Sy ko |
. DBCIARE Gtmph st anlnSeconds 1T

220 DECLAEE m‘l:m; O il

DECIARE Gverksnd_tine INTETDIE

B0 | [T sverktimetiaz o1t

[DECLARE .uut-bstAlCﬁAl(-zx) 5

DECIARE Gnoosestabs VARCHAR (oex

Wk (2) DECLARE @checklogsize BIT=0

DECIARE domesentabfmame

SH PRI EERS | B EASHE | [DICLARE sdeliniter CHRRL) ="
S ESE SR @nNOeXeCtabs [HEEiAse o smentyee ent P
SRS

== BECLARE Setectabelon DT = Lo Gukertabs)

1 arecord_Log flog =
553 ‘ et
i o psns e+

S abisets

s 2 wwm object_id = Object id([dbo]. [KIndedMaintenanceLog)’)
£ o ' type N (WU 7))
o EESERS e

CRRATE TALE (dbe]. IoTndelintenanceLog

o] INT IDENTITE(L, 1) PRIMARY KEY, — BHEIDENER
[Tabletiane] SISIAG NOT WL, v

image8.emf
全库索引重建脚本. txt

ȫ�������ؽ��ű�.txt
IF Object_id('tempdb..#temp_table_info') <> 0

 DROP TABLE #temp_table_info

IF Object_id('tempdb..#indexinfo') <> 0

 DROP TABLE #indexinfo

-- 创建临时表

CREATE TABLE #temp_table_info

 (

 TABLE_NAME SYSNAME

);

CREATE TABLE #indexinfo

 (

 id INT IDENTITY(1, 1),

 object_name SYSNAME,

 fragmentpercent FLOAT,

 execsql SYSNAME,

 objsize_mb FLOAT

);

go

SET nocount ON

DECLARE @record_log_flag BIT = 1 --记录索引重建优化的详细日志到表中，0表示false,1表示true

DECLARE @log_retention_time INT = 7 --日志保留时间，单位是天

DECLARE @i INT

DECLARE @icount INT

DECLARE @sql AS VARCHAR(max)

DECLARE @tbsize AS DECIMAL(19, 3)

DECLARE @driversize AS INT

DECLARE @logunusedsize INT=0

DECLARE @message VARCHAR(300)

DECLARE @tbname SYSNAME

DECLARE @begintime DATETIME

DECLARE @tmpbegintime DATETIME

DECLARE @tmpendtime DATETIME

DECLARE @tmpDurationInSeconds INT

DECLARE @worktime INT = 360

DECLARE @work_end_time DATETIME --任务截至时间

DECLARE @worktimeflag BIT

DECLARE @exectabs VARCHAR(max) = ''

DECLARE @noexectabs VARCHAR(max) = ''

DECLARE @checklogsize BIT=0

DECLARE @currenttablename VARCHAR(max)

DECLARE @delimiter CHAR(1) = ','

DECLARE @startindex INT = 1

DECLARE @fragmentpercent FLOAT

----------可人工调整的部分开始----------

--SET @worktime = 240 --允许脚本执行的工作时间，单位为分钟，默认为6个小时（0表示不限制工作时间，直至所有符合条件的索引重建完成）

--SET @noexectabs='T_BAS_OPERATELOGBK,T_BAS_OPERATELOGBK_S'--人工指定对某些表不进行重建索引，格式为't3,t4',默认为''(即不指定,对全库碎片率超过5的索引进行重建优化)

----------可人工调整的部分结束----------

DECLARE @noexectabslen INT = Len(@noexectabs);

DECLARE @exectabslen INT = Len(@exectabs);

IF @record_log_flag = 1

 BEGIN

 IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDIndexMaintenanceLog]')

 AND type IN (N'U'))

 --创建日志表

 BEGIN

 CREATE TABLE [dbo].KDIndexMaintenanceLog

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 [TableName] SYSNAME NOT NULL,

 objsize_mb FLOAT NOT NULL,

 [AvgFragmentationInPercent] [FLOAT] NOT NULL,

 execsql [NVARCHAR](200),

 [RebuildStartTime] [DATETIME] NULL,

 [RebuildEndTime] [DATETIME] NULL,

 [DurationInSeconds] [INT] NULL

);

 --创建索引

 CREATE NONCLUSTERED INDEX IX_KDIndexMaintenanceLog

 ON KDIndexMaintenanceLog (TableName, RebuildStartTime);

 END

 --清理过期日志

 DELETE FROM [dbo].KDIndexMaintenanceLog

 WHERE [RebuildStartTime] < Dateadd(DAY, -@log_retention_time, Cast (Getdate() AS DATE))

 END

IF @worktime > 0

 BEGIN

 SET @work_end_time= Dateadd(MINUTE, @worktime, Getdate())

 SET @worktimeflag=1

 END

ELSE

 SET @worktimeflag=0

--判断sql server版本是否高于2008 r2

IF (Cast(Serverproperty('ProductMajorVersion') AS INT) > 10

 OR (Cast(Serverproperty('ProductMajorVersion') AS INT) = 10

 AND Cast(Serverproperty('ProductMinorVersion') AS INT) >= 50))

 SET @checklogsize=1

IF (@worktimeflag = 1

 AND @work_end_time <= Getdate())

 BEGIN

 SET @message=N'停止执行。当前系统时间为：'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N'超过了任务截至时间:' + @work_end_time

 RAISERROR(@message,0,1);

 RETURN

 END;

SET @message=N'开始获取需要优化的表'

 + CONVERT(VARCHAR(30), Getdate(), 121)

RAISERROR(@message,0,1);

IF Len(Ltrim(Rtrim(@exectabs))) > 0

 BEGIN

 SET @startindex=1

 WHILE @startindex <= @exectabslen

 BEGIN

 SET @currenttablename = Ltrim(Rtrim(Substring(@exectabs, @startindex, CASE

 WHEN Charindex(@delimiter, @exectabs, @startindex) = 0 THEN 8000

 ELSE Charindex(@delimiter, @exectabs, @startindex) - @startindex

 END)));

 INSERT INTO #temp_table_info

 (TABLE_NAME)

 VALUES (@currenttablename);

 SET @startindex = CASE

 WHEN Charindex(@delimiter, @exectabs, @startindex) = 0 THEN @exectabslen + 1

 ELSE Charindex(@delimiter, @exectabs, @startindex)

 + 1

 END;

 END;

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'

 AND so.NAME IN(SELECT TABLE_NAME

 FROM #temp_table_info)),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 15 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 WHEN Max(avg_fragmentation_in_percent) >= 5 THEN 'dbcc indexdefrag(0,' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

ELSE IF Len(Ltrim(Rtrim(@noexectabs))) > 0

 BEGIN

 SET @startindex=1

 WHILE @startindex <= @noexectabslen

 BEGIN

 SET @currenttablename = Ltrim(Rtrim(Substring(@noexectabs, @startindex, CASE

 WHEN Charindex(@delimiter, @noexectabs, @startindex) = 0 THEN 8000

 ELSE Charindex(@delimiter, @noexectabs, @startindex) - @startindex

 END)));

 INSERT INTO #temp_table_info

 (TABLE_NAME)

 VALUES (@currenttablename);

 SET @startindex = CASE

 WHEN Charindex(@delimiter, @noexectabs, @startindex) = 0 THEN @noexectabslen + 1

 ELSE Charindex(@delimiter, @noexectabs, @startindex)

 + 1

 END;

 END;

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'

 AND so.NAME NOT IN(SELECT TABLE_NAME

 FROM #temp_table_info)),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 15 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 WHEN Max(avg_fragmentation_in_percent) >= 5 THEN 'dbcc indexdefrag(0,' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

ELSE

 BEGIN

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 15 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 WHEN Max(avg_fragmentation_in_percent) >= 5 THEN 'dbcc indexdefrag(0,' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

SET @icount=(SELECT Count(1)

 FROM #indexinfo);

SET @message=N'结束获取需要优化的表'

 + CONVERT(VARCHAR(30), Getdate(), 121)

RAISERROR(@message,0,1);

IF @icount = 0

 BEGIN

 SET @message=N'数据库：' + Db_name() + N'不需要优化'

 RAISERROR(@message,0,1);

 RETURN

 END;

SET @begintime=Getdate()

SET @message=N'数据库：' + Db_name() + N'，开始时间： '

 + CONVERT(VARCHAR(30), @begintime, 121)

 + N' 总共需要执行:' + Cast(@icount AS VARCHAR)

 + N' 条语句'

RAISERROR(@message,0,1);

SET @i=1

WHILE @i <= @icount

 BEGIN

 SELECT @sql = execsql,

 @tbsize = objsize_mb,

 @tbname = object_name,

 @fragmentpercent = fragmentpercent

 FROM #indexinfo

 WHERE id = @i

 IF(@checklogsize = 1)

 BEGIN

 SELECT @driversize = Cast(Cast(available_bytes AS DECIMAL) / (1024 * 1024) AS BIGINT)

 FROM sys.master_files AS f

 CROSS APPLY sys.Dm_os_volume_stats(f.database_id, f.file_id)

 WHERE f.database_id = Db_id()

 AND f.type_desc = 'LOG';

 SELECT @logunusedsize = (total_log_size_in_bytes - used_log_space_in_bytes) / 1024 / 1024

 FROM sys.dm_db_log_space_usage

 IF @i = 1

 BEGIN

 SET @message=N'日志可用空间为(MB)：'

 + Cast(@logunusedsize AS VARCHAR)

 + N';磁盘可用空间为(MB)：'

 + Cast(@driversize AS VARCHAR)

 RAISERROR(@message,0,1);

 END;

 END

 IF (@worktimeflag = 1

 AND @work_end_time <= Getdate())

 BEGIN

 SET @message=N'停止执行。因为当前系统时间为：'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N'超过了开始工作时间范围'

 + CONVERT(VARCHAR(30), @work_end_time, 121)

 + N'不允许执行优化计划'

 RAISERROR(@message,0,1);

 RETURN

 END

 IF (@tbsize > (@driversize + @logunusedsize)

 AND @checklogsize = 1)

 BEGIN

 SET @message=N'磁盘可用空间和日志可用空间不足，执行终止。原因：表:' + @tbname

 + N'总需空间大小(MB)：' + Cast(@tbsize AS VARCHAR)

 + N';日志可用空间为(MB)：'

 + Cast(@logunusedsize AS VARCHAR)

 + N';磁盘可用空间为(MB)：'

 + Cast(@driversize AS VARCHAR)

 RAISERROR(@message,16,1);

 RETURN

 END

 ELSE

 BEGIN

 SET @message= Cast(@i AS VARCHAR) + '/'

 + Cast(@icount AS VARCHAR) + N'('

 + Cast(@tbsize AS VARCHAR) + 'MB)：' + @tbname

 SET @tmpbegintime=Getdate()

 IF @record_log_flag = 1

 BEGIN

 --记录日志

 INSERT INTO KDIndexMaintenanceLog

 (TableName,

 objsize_mb,

 AvgFragmentationInPercent,

 execsql,

 RebuildStartTime)

 VALUES (@tbname,

 @tbsize,

 @fragmentpercent,

 @sql,

 @tmpbegintime)

 END

 EXEC(@sql)

 SET @tmpendtime=Getdate()

 SET @tmpDurationInSeconds = Datediff(second, @tmpbegintime, @tmpendtime)

 IF @record_log_flag = 1

 BEGIN

 --更新日志表中索引优化完成时间

 UPDATE KDIndexMaintenanceLog

 SET RebuildEndTime = @tmpendtime,

 DurationInSeconds = @tmpDurationInSeconds

 WHERE TableName = @tbname

 AND RebuildStartTime = @tmpbegintime;

 END

 SET @message=@message + N':'

 + Cast (@tmpDurationInSeconds AS NVARCHAR)

 + N'秒'

 RAISERROR(@message,0,1);

 END

 SET @i=@i + 1

 END

SET @message=N'数据库：' + Db_name() + N'，结束时间： '

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N' 总耗时(秒)：'

 + Cast(Datediff(ss, @begintime, Getdate()) AS VARCHAR)

RAISERROR(@message,0,1);

image9.png
TwE ~ O %

¥ I (L)
FER
D EH B A

g (E) i (B)

image10.png
st - o
)
HREEE EEIT v BeR®
2024/ 8/29 16:56:48 |3
E
T 58 5
HATER® T EEE
R w O2ME® 2150
[mEl) ® 24EW
SRIE
© #iT—7R HEAW); o000
O izl T] FHA@: owm
SRHAG: s
1A
FHEMD 2/ 52 O #REM®E 2024/ /29
© FEFEHQ
#iE
HHE
53 £

image11.png
TwE ~ O %
I (L)

D = ECI
2 sAEsRumn 2 EEOREM v

Ei 100 FERL(E) g (E)

i (B)

image12.png
M n1 - Mi f Ma Studio
XD SEO WEY I80 =0w =Ee
e-o|f-a-2 FEEAN B R &

o~

8 k3cloud
e
=3
EEENR
=5

w0 EEEE
@ [Xevent FES

image13.png
[frmts - FEERS

- B X
Z_ T Jws - @m
£an
i E0) RFIERLRIL
»ER FiR#©) e (]
£ @ e
» Bt =8l© [EZELE3T)] v
HBHO) e |
i
E5E
it
e (&R
W TEEREE ®
[t [erea/o/cs 1716146
- R fevea/o/es 17 18:46
e AR
SREUAPEE

image14.png
& RS - B5IERERE = =] x
RED Ows -~ @mi

£ R
,ER
EEFIEREEEL
=2
Transact-SQL I (T-59L) 2
B8 ®
S2EFSIERFY gppp
- Jaszoeaori2ite v
HRORER —
#Ew A Bcor Lok flag BT = % . o
TECLAE Lok Fetentionsfine T8T
ey BEEE oliine ot 2y TRRE)
. TECLGE i eshold TATEFIRE
2EW %Euuﬁ :{ﬂlﬂmm;mk WA(QS:?‘M
e EHO | D abohe Wb aw
BEE =
. e —ser wﬁﬁ/\?ﬂfgggﬁu 20BTRRAFERTS)
st BHQ | |1 e TSRS, —ovorkeine, Godate)
E SET GompthackCont = 1
 EEEHEL 12 Grecord block_flag = 1
RIS | SR A | oy, o Gut s
SEM=EL A e R
bl g < >
L)

T

image15.emf
全库索引重建监控 脚本.txt

ȫ�������ؽ���ؽű�.txt
-- 声明变量

DECLARE @record_block_flag BIT = 1 --记录阻塞信息到表中，0表示false,1表示true

DECLARE @block_retention_time INT = 7 --阻塞信息保留时间，单位是天，默认保留1天

DECLARE @LoopCheckCount INT; --循环检查次数，避免漏kill掉

DECLARE @worktime INT = 360

DECLARE @Threshold DATETIME

DECLARE @KillCommands NVARCHAR(MAX) = '';

DECLARE @message VARCHAR(300); --日志信息

DECLARE @blockinfo NVARCHAR(max)

----------需要人工调整的部分开始----------

--SET @worktime = 240 --单位为分钟,240表示最长允许重建索引脚本时间执行4个小时 ，要与索引重建优化脚本中的@worktime保持一致

----------需要人工调整的部分结束----------

SET @Threshold =Dateadd(MINUTE, -@worktime, Getdate());

SET @LoopCheckCount = 1

IF @record_block_flag = 1

 BEGIN

 IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDBlockInfoLog]')

 AND type IN (N'U'))

 --创建阻塞信息表

 BEGIN

 CREATE TABLE [dbo].KDBlockInfoLog

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 blocktype NVARCHAR(200) NOT NULL,

 DBNAME NVARCHAR(200) NOT NULL,

 BlockEntityId BIGINT NOT NULL,

 resourceDescription [NVARCHAR](200),

 requestMode [NVARCHAR](200),

 requestSessionId INT,

 waitDuration_ms BIGINT,

 waitBatchSql NVARCHAR(max),

 waitSql NVARCHAR(max),

 blockingSessionId SMALLINT,

 blockingBatchSql NVARCHAR(max),

 createTime [DATETIME] NULL

);

 END

 --清理过期日志

 DELETE FROM [dbo].KDBlockInfoLog

 WHERE createTime < Dateadd(DAY, -@block_retention_time, Cast (Getdate() AS DATE))

 END

WHILE @LoopCheckCount <= 60

 BEGIN

 -- 构造需要杀死的会话ID列表，并准备KILL命令

 SELECT @KillCommands = 'KILL ' + Cast(session_id AS VARCHAR(10)) + ';'

 FROM (SELECT DISTINCT r.session_id

 FROM sys.dm_exec_requests r

 WHERE r.command = 'DBCC'

 AND r.start_time <= @Threshold) AS SessionsToKill; --执行时间超过@worktime的就杀掉

 -- 检查是否有需要执行的KILL命令

 IF Len(@KillCommands) > 0

 BEGIN

 --判断是否需要记录阻塞信息

 IF @record_block_flag = 1

 BEGIN

 INSERT INTO KDBlockInfoLog

 (blocktype,

 DBNAME,

 BlockEntityId,

 resourceDescription,

 requestMode,

 requestSessionId,

 waitDuration_ms,

 waitBatchSql,

 waitSql,

 blockingSessionId,

 blockingBatchSql,

 createTime)

 SELECT t1.resource_type AS [锁类型],

 Db_name(resource_database_id) AS [数据库名],

 t1.resource_associated_entity_id AS [阻塞资源对象],

 t1.resource_description AS [资源描述信息],

 t1.request_mode AS [请求的锁],

 t1.request_session_id AS [等待会话],

 t2.wait_duration_ms AS [等待时间],

 (SELECT [text]

 FROM sys.dm_exec_requests AS r WITH (NOLOCK)

 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle])

 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的批SQL],

 (SELECT Substring(qt.[text], r.statement_start_offset / 2, (CASE

 WHEN r.statement_end_offset = -1 THEN Len(CONVERT(NVARCHAR(max), qt.[text])) * 2

 ELSE r.statement_end_offset

 END) / 2)

 FROM sys.dm_exec_requests AS r WITH (NOLOCK)

 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle]) AS qt

 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的SQL],

 t2.blocking_session_id AS [阻塞会话],

 (SELECT [text]

 FROM sys.sysprocesses AS p

 CROSS APPLY sys.Dm_exec_sql_text(p.[sql_handle])

 WHERE p.spid = t2.blocking_session_id) AS [阻塞会话执行的批SQL],

						 getdate()

 FROM sys.dm_tran_locks AS t1 WITH (NOLOCK)

 INNER JOIN sys.dm_os_waiting_tasks AS t2 WITH (NOLOCK)

 ON t1.lock_owner_address = t2.resource_address

 END

 -- 执行KILL命令

 EXEC Sp_executesql

 @KillCommands;

 SET @message= N'Finished killing sessions. '

 + @KillCommands;

 SET @KillCommands = ''

 RAISERROR(@message,0,1);

 END

 ELSE

 BEGIN

 SET @message= N'No sessions to kill. ';

 RAISERROR(@message,0,1);

 END

 SET @LoopCheckCount = @LoopCheckCount + 1;

 WAITFOR DELAY '00:00:01'; --等待1秒

 END;

image16.png
=

@ fewitmm: - smE
)

s (5)

810845

v A E)

- o x

AR (D)

2024/ 8/30 14:86:13 B
E
i E] =
HeTER® T EHAmE
o2 ® O2EEE 50
Ogs-@ " Fm)
x5
@ s> HEHW: -10:00
O iz T s FHAD: s0m -
HRHAGQ: s -
#481A
FHHESD poze/ o8~ OUFEM®: wooa/ 0/
© REREMQ)
=
e VD 5:10:00 - Bk 2004/0/29 FHATRFRTA>

image17.png
i sQLQuerylt.sql - k3clouddb.AIS20240711192106 (sa (69)* - Microsoft SQL Server Management Studio HRERER) (Ctrl+Q) p - O n
XHO 8O WEY ZIQ WEE IRD BOW HEE
©-o[8- oM 2N 2R Ldal9-c-[8] | workime
S | AIS20240711192106 - || b HEX) s 5[] 2" 82 & £ | | % -

o RATSERFOR (@nessage. 0. 1)

= @ k3clouddb (SQL Server 15.0.2000.5 - sa)
& & s
- s
o
@ A1S20240711192106 (EE)
@ A1S20240711192106Log (EF2)
@ DWConfiguration
@ DWDiagnostics.
@ DWaueue
@ K3DBConfiger20247115255034 (EF:5)
- =t
= BEEve
B
= A
= TR
¥ PolyBase
1 Always On SARHE
L)

11 Integration Services B

& 5QL Server 2

B W el
[syspolicy_purge history
E BHUsSRsIEE

= == BEEE: ATS20240711192106, FHEARTE): 2024-08-30 09:31:19.997 SHEEHIT:211 £iE6)
BRAIRSES 0m): 128 METTRSEN 08) : 16289
[ESKESSETEE Subplan 1 1/211(0.258MB) : KDIndexMaintenancelog: 1#
[ESTREsERE(Subplan_1 2/211(0.0165) : T_AM_REPORTSTYLECOLUMN: 08
o felsEERE 3/211(0.0164E) : T_AY REBORTSTYLEROW: 08
i 4/211(0.0554B) : T_AP_FIELDCONFIG:0F)
= 5/211(0.0164B) : T_APM_MONITORENTITY: 0B}
AR 6/211(0.0164B) : T_BAS_ASSISTANTDATA: 0¥
- RE 7/211(0.03145) : T_EAS_ASSISTANTDATA L:0B>
o mEEE 8/211(0.0168) : T_BAS_BILLEDIMAP: 0
9/211(0.0164B) : T_BAS_BILLKEYFIELDEDIMAD: 0%
[XEvent RER 10/211(0.016¥B) : T_BAS_BILLNOREPATRMAR: 0}
11/211(0.016YB) : T_BAS_BSBILLMAD: 0¥}
12/211(0.031MB): T BAS BSEMAPENTITY:CH#
00% -

image18.png
[Bt - 2ER3ISHEREL

p3: 1)
& E
FER
&l
FER
& B
» BiF

TREE
DB

BE
ik

TwE ~ O %

FiE 0
28I(C)

HEA(D)

BRE
E
BiEATiE
Exfzzadial
ExthiTadial
5 -

Rz (4]

Fodid o

[2024/9/4 14:09:53

[2024/9/4 18:26:05

image19.png
o - @

SEFSIIET

e
Transact-5QL B2 (1-59L) ¥
FEATRIE)

S0 DECLAE Gir somentpercent FLOAT ~
)
S0
£G)
O | [T eride e <1
IF WOT EXISTS (SELECT %
) TR sy chjects

WERE object_id = Object {d(F [dbo). [OTndendisintenancelog])
e 0 (XU)

SRR S ER A SR NS "
FEM @worktimeSHEEER(TAE A 1/\iT, f;fgg;giewéga@

T @noexectab i B | g DT THLE o] Rlndodintennctos
8 1 INT IDENTITY(1, 1) PRIWARY KEY, — EBIDEXER
ey SN T L
] Thvers sentationlaercent] [FLOAT] 0T WAL
pesterny (ARCHR] (200),
s ficbutListar ige] {DATETDNE] ML,
i (RebuildEndTine] (IATFIDE] L
[arstienlaseconds] o] L
o BEEEEE)
—BEEFs|

CREATE NONCLUSTERED TNDEX % KMndelsintensnoelos
ON KTnderdisintenancelog (Tablelane, RebuildStartTine)

2 < — N
ok

image20.emf
全库索引分批重建 脚本.txt

ȫ�����������ؽ��ű�.txt
IF Object_id('tempdb..#temp_table_info') <> 0

 DROP TABLE #temp_table_info

-- 创建临时表

CREATE TABLE #temp_table_info

 (

 TABLE_NAME SYSNAME

);

IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDIndexMaintenanceTask]')

 AND type IN (N'U'))

 --创建索引重建任务表

 BEGIN

 CREATE TABLE [dbo].KDIndexMaintenanceTask

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 [TableName] SYSNAME NOT NULL,

 objsize_mb FLOAT NOT NULL,

 [AvgFragmentationInPercent] FLOAT NOT NULL,

 execsql NVARCHAR(200),

 [MaintenanceFlag] BIT NOT NULL DEFAULT 0

);

 END

go

SET nocount ON

DECLARE @record_log_flag BIT = 1 --记录索引重建优化的详细日志到表中，0表示false,1表示true

DECLARE @log_retention_time INT = 7 --日志保留时间，单位是天

DECLARE @i INT

DECLARE @icount INT

DECLARE @sql AS VARCHAR(max)

DECLARE @tbsize AS DECIMAL(19, 3)

DECLARE @driversize AS INT

DECLARE @logunusedsize INT=0

DECLARE @message VARCHAR(300)

DECLARE @tbname SYSNAME

DECLARE @begintime DATETIME

DECLARE @tmpbegintime DATETIME

DECLARE @tmpendtime DATETIME

DECLARE @tmpDurationInSeconds INT

DECLARE @worktime INT = 360

DECLARE @work_end_time DATETIME --任务截至时间

DECLARE @worktimeflag BIT

DECLARE @noexectabs VARCHAR(max) = ''

DECLARE @checklogsize BIT=0

DECLARE @currenttablename VARCHAR(max)

DECLARE @delimiter CHAR(1) = ','

DECLARE @startindex INT = 1

DECLARE @fragmentpercent FLOAT

----------可人工调整的部分开始----------

SET @worktime = 60 --允许脚本执行的工作时间，单位为分钟，默认为6个小时（0表示不限制工作时间，直至所有符合条件的索引重建完成）

SET @noexectabs='T_BAS_OPERATELOGBK,T_BAS_OPERATELOGBK_S'--人工指定对某些表不进行重建索引，格式为't3,t4',默认为''(即不指定,对全库碎片率超过5的索引进行重建优化)

----------可人工调整的部分结束----------

DECLARE @noexectabslen INT = Len(@noexectabs);

IF @record_log_flag = 1

 BEGIN

 IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDIndexMaintenanceLog]')

 AND type IN (N'U'))

 --创建索引重建日志表

 BEGIN

 CREATE TABLE [dbo].KDIndexMaintenanceLog

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 [TableName] SYSNAME NOT NULL,

 objsize_mb FLOAT NOT NULL,

 [AvgFragmentationInPercent] [FLOAT] NOT NULL,

 execsql [NVARCHAR](200),

 [RebuildStartTime] [DATETIME] NULL,

 [RebuildEndTime] [DATETIME] NULL,

 [DurationInSeconds] [INT] NULL

);

 --创建索引

 CREATE NONCLUSTERED INDEX IX_KDIndexMaintenanceLog

 ON KDIndexMaintenanceLog (TableName, RebuildStartTime);

 END

 --清理过期日志

 DELETE FROM [dbo].KDIndexMaintenanceLog

 WHERE [RebuildStartTime] < Dateadd(DAY, -@log_retention_time, Cast (Getdate() AS DATE))

 END

IF @worktime > 0

 BEGIN

 SET @work_end_time= Dateadd(MINUTE, @worktime, Getdate())

 SET @worktimeflag=1

 END

ELSE

 SET @worktimeflag=0

--判断sql server版本是否高于2008 r2

IF (Cast(Serverproperty('ProductMajorVersion') AS INT) > 10

 OR (Cast(Serverproperty('ProductMajorVersion') AS INT) = 10

 AND Cast(Serverproperty('ProductMinorVersion') AS INT) >= 50))

 SET @checklogsize=1

IF (@worktimeflag = 1

 AND @work_end_time <= Getdate())

 BEGIN

 SET @message=N'停止执行。当前系统时间为：'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N'超过了任务截至时间:' + @work_end_time

 RAISERROR(@message,0,1);

 RETURN

 END;

SET @icount=(SELECT Count(1)

 FROM KDIndexMaintenanceTask

 WHERE MaintenanceFlag = 0);

IF @icount = 0 --开启新一轮任务

 BEGIN

 SET @message=N'开始获取需要优化的表'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 RAISERROR(@message,0,1);

 TRUNCATE TABLE KDIndexMaintenanceTask

 IF Len(Ltrim(Rtrim(@noexectabs))) > 0

 BEGIN

 SET @startindex=1

 WHILE @startindex <= @noexectabslen

 BEGIN

 SET @currenttablename = Ltrim(Rtrim(Substring(@noexectabs, @startindex, CASE

 WHEN Charindex(@delimiter, @noexectabs, @startindex) = 0 THEN 8000

 ELSE Charindex(@delimiter, @noexectabs, @startindex) - @startindex

 END)));

 INSERT INTO #temp_table_info

 (TABLE_NAME)

 VALUES (@currenttablename);

 SET @startindex = CASE

 WHEN Charindex(@delimiter, @noexectabs, @startindex) = 0 THEN @noexectabslen + 1

 ELSE Charindex(@delimiter, @noexectabs, @startindex)

 + 1

 END;

 END;

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'

 AND so.NAME NOT IN(SELECT TABLE_NAME

 FROM #temp_table_info)),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 15 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 WHEN Max(avg_fragmentation_in_percent) >= 5 THEN 'dbcc indexdefrag(0,' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO KDIndexMaintenanceTask

 (TableName,

 objsize_mb,

 AvgFragmentationInPercent,

 execsql)

 SELECT m.object_name,

 m.objsize_mb,

 m.fragmentpercent,

 m.execsql

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 3 DESC

 END

 ELSE

 BEGIN

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 15 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 WHEN Max(avg_fragmentation_in_percent) >= 5 THEN 'dbcc indexdefrag(0,' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO KDIndexMaintenanceTask

 (TableName,

 objsize_mb,

 AvgFragmentationInPercent,

 execsql)

 SELECT m.object_name,

 m.objsize_mb,

 m.fragmentpercent,

 m.execsql

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 3 DESC

 END

 SET @message=N'结束获取需要优化的表'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 END

SET @icount=(SELECT Count(1)

 FROM KDIndexMaintenanceTask

 WHERE MaintenanceFlag = 0);

RAISERROR(@message,0,1);

IF @icount = 0

 BEGIN

 SET @message=N'数据库：' + Db_name() + N'不需要优化'

 RAISERROR(@message,0,1);

 RETURN

 END;

SET @begintime=Getdate()

SET @message=N'数据库：' + Db_name() + N'，开始时间： '

 + CONVERT(VARCHAR(30), @begintime, 121)

 + N' 总共需要执行:' + Cast(@icount AS VARCHAR)

 + N' 条语句'

RAISERROR(@message,0,1);

DECLARE TaskCursor CURSOR FOR

 SELECT TableName,

 objsize_mb,

 AvgFragmentationInPercent,

 execsql

 FROM KDIndexMaintenanceTask

 WHERE MaintenanceFlag = 0

 ORDER BY 3 DESC

OPEN TaskCursor

FETCH NEXT FROM TaskCursor INTO @tbname, @tbsize, @fragmentpercent, @sql

WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @message=N'开始优化表:'+@tbname

	 RAISERROR(@message,0,1);

 IF(@checklogsize = 1)

 BEGIN

 SELECT @driversize = Cast(Cast(available_bytes AS DECIMAL) / (1024 * 1024) AS BIGINT)

 FROM sys.master_files AS f

 CROSS APPLY sys.Dm_os_volume_stats(f.database_id, f.file_id)

 WHERE f.database_id = Db_id()

 AND f.type_desc = 'LOG';

 SELECT @logunusedsize = (total_log_size_in_bytes - used_log_space_in_bytes) / 1024 / 1024

 FROM sys.dm_db_log_space_usage

 IF @i = 1

 BEGIN

 SET @message=N'日志可用空间为(MB)：'

 + Cast(@logunusedsize AS VARCHAR)

 + N';磁盘可用空间为(MB)：'

 + Cast(@driversize AS VARCHAR)

 RAISERROR(@message,0,1);

 END;

 END

 IF (@worktimeflag = 1

 AND @work_end_time <= Getdate())

 BEGIN

 SET @message=N'停止执行。因为当前系统时间为：'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N'超过了开始工作时间范围'

 + CONVERT(VARCHAR(30), @work_end_time, 121)

 + N'不允许执行优化计划'

 RAISERROR(@message,0,1);

 RETURN

 END

 IF (@tbsize > (@driversize + @logunusedsize)

 AND @checklogsize = 1)

 BEGIN

 SET @message=N'磁盘可用空间和日志可用空间不足，执行终止。原因：表:' + @tbname

 + N'总需空间大小(MB)：' + Cast(@tbsize AS VARCHAR)

 + N';日志可用空间为(MB)：'

 + Cast(@logunusedsize AS VARCHAR)

 + N';磁盘可用空间为(MB)：'

 + Cast(@driversize AS VARCHAR)

 RAISERROR(@message,16,1);

 RETURN

 END

 ELSE

 BEGIN

 SET @message= Cast(@i AS VARCHAR) + '/'

 + Cast(@icount AS VARCHAR) + N'('

 + Cast(@tbsize AS VARCHAR) + 'MB)：' + @tbname

 SET @tmpbegintime=Getdate()

 IF @record_log_flag = 1

 BEGIN

 --记录日志

 INSERT INTO KDIndexMaintenanceLog

 (TableName,

 objsize_mb,

 AvgFragmentationInPercent,

 execsql,

 RebuildStartTime)

 VALUES (@tbname,

 @tbsize,

 @fragmentpercent,

 @sql,

 @tmpbegintime)

 END

 EXEC(@sql)

 SET @tmpendtime=Getdate()

 SET @tmpDurationInSeconds = Datediff(second, @tmpbegintime, @tmpendtime)

 IF @record_log_flag = 1

 BEGIN

 --更新任务表中的维护状态

 UPDATE KDIndexMaintenanceTask

 SET MaintenanceFlag = 1

 WHERE TableName = @tbname

 --更新日志表中的索引优化完成时间

 UPDATE KDIndexMaintenanceLog

 SET RebuildEndTime = @tmpendtime,

 DurationInSeconds = @tmpDurationInSeconds

 WHERE TableName = @tbname

 AND RebuildStartTime = @tmpbegintime;

 END

 SET @message=@message + N':'

 + Cast (@tmpDurationInSeconds AS NVARCHAR)

 + N'秒'

 RAISERROR(@message,0,1);

 FETCH NEXT FROM TaskCursor INTO @tbname, @tbsize, @fragmentpercent, @sql

 END

 END

CLOSE TaskCursor;

DEALLOCATE TaskCursor;

SET @message=N'数据库：' + Db_name() + N'，结束时间： '

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N' 总耗时(秒)：'

 + Cast(Datediff(ss, @begintime, Getdate()) AS VARCHAR)

RAISERROR(@message,0,1);

image21.png
p3: 1)
&R
FER
&l
FER
& B
» BiF

HE
TREE
DB
b4

BE
ik

[Bt - 2ER3ISHEREL

TwE ~ O %

I (L)

Ei 100

FERL(E)

g (E)

i (B)

image22.png
% sQlQueryl2:sql - k3clouddb.AIS20240711192106 (sa (51) - Microsoft SQL Server Management Studio
XD RSO WEY ZHHQ REE IKOD BSOW BEHH

-0l i me REEEIN RRARS| XD
i | |Ais20240711192106 - || b a0 = v 88 B[] 87 82

SQLQuery

= f Y [
@ DWDiagnostics.
@ DWQueue
§ K3DBConfiger20247115255934 (B:)
- =ae
= EsEE
BT]
= s
= =T
¥ PolyBase
5 1 Always On REIFEHE
o = e
© W8 k3cloud-ag (EB)
5 = TEERE
7 081 (=8)
1 D2 (am)
o = TEEEE
@ AIS20240711152106
@ AIS20240711152106Log
B K3DBConfiger20247115255934
- TR
-
¥ Integration Services B
© & QL Server K2
EEy
[syspolicy_purge_history
H SsusEssER
I ESKEEEERE Subplan 1
D ESTEsEEE Subplan 1
D EREm s R

SQLQuery10.

BREE (Crl+Q)

image23.png
[B - 2ERS IS HERESEY

p3: 1)
& E
FER
&l
FER
& B
» BiF

TREE
DB

BE
ik

TwE ~ O %

FiE 0
28I(C)

HEA(D)

BRE
E
BiEATiE
Exfzzadial
ExthiTadial
5 -

Rz (4]

Fdid

2o24/9/4 14:26:22

[2024/9/4 18:46:42

image24.png
B rusEEE - eERIsHERLE

o - @

o

X

Transact-5QL B (1-59L)

FEATRIE)

HEES2ERS|
SHEEIFIHTH

EEFIISHERRE

BHIC)
Ha(2)
HTE)

IR EERS | DI ERISEHA
SHEENZEEMFHER @worktime 24|
SeERSISMERIFERA—S

HE

TREE
DB

b4

o TSR

ALS2024071 1192106 5
=rEE =
IDBCLAGE Grsoerd_block_£Lag BT = 1 —EREEAES AL, Of TGl T

DECLIRE @hlock retention_tine TUT = 7 JF 7 ;é (e B3 WX ES
DECLARE @LoopCheckCount TUT: —(BIHATEERH Bideink

DECLARE Grorktine TNT = 360
DECLARE GThrashold DATETIE
IDECIARE @i 11Conmands WVARCHAR(O)
DECLARE Gnasae VARCHAR(300): —EI7
IDECLARE @bTockinfo IVARCHAR (nax)

T
WUTE, ~@vorktine, Getdate())
SET GLocpCheckCouat

TF @racord block_flag = 1
BECIY

BE

ik

TF NOT BXISTS (SELECT %
FRON - sys. objects
WERE object_id = Object id(F [dbo). [KDBlockTnfolog])
A type T8 (K V)
—OREREEER
BECTY
CREATE TLE Léhel. MBLockinfoLog
m INT IDENTITY(1, 1) PRINARY KEY, — EBTDEXOER
blocktype VARCIUAR(200) 0T WL,
DERAIE VARCIAR(200) 0T WULL,
BlockEnti 14 BIGINT OT WL,
resourcelesoription [WARCHAR] (200),
requestiode [mARcHaR] (200);
reguestSessionld NI,
waihurationns EIGINT,
wai tBatohSal WARCHOR (na),
waitsal VARCHAR (nax). v
< >
T—5m
HE A

b

E

image25.emf
全库索引分批重建 监控脚本.txt

ȫ�����������ؽ���ؽű�.txt
-- 声明变量

DECLARE @record_block_flag BIT = 1 --记录阻塞信息到表中，0表示false,1表示true

DECLARE @block_retention_time INT = 7 --阻塞信息保留时间，单位是天，默认保留1天

DECLARE @LoopCheckCount INT; --循环检查次数，避免漏kill掉

DECLARE @worktime INT = 360

DECLARE @Threshold DATETIME

DECLARE @KillCommands NVARCHAR(MAX) = '';

DECLARE @message VARCHAR(300); --日志信息

DECLARE @blockinfo NVARCHAR(max)

----------需要人工调整的部分开始----------

SET @worktime = 60 --单位为分钟,240表示最长允许重建索引脚本时间执行4个小时 ，要与索引重建优化脚本中的@worktime保持一致

----------需要人工调整的部分结束----------

SET @Threshold =Dateadd(MINUTE, -@worktime, Getdate());

SET @LoopCheckCount = 1

IF @record_block_flag = 1

 BEGIN

 IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDBlockInfoLog]')

 AND type IN (N'U'))

 --创建阻塞信息表

 BEGIN

 CREATE TABLE [dbo].KDBlockInfoLog

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 blocktype NVARCHAR(200) NOT NULL,

 DBNAME NVARCHAR(200) NOT NULL,

 BlockEntityId BIGINT NOT NULL,

 resourceDescription [NVARCHAR](200),

 requestMode [NVARCHAR](200),

 requestSessionId INT,

 waitDuration_ms BIGINT,

 waitBatchSql NVARCHAR(max),

 waitSql NVARCHAR(max),

 blockingSessionId SMALLINT,

 blockingBatchSql NVARCHAR(max),

 createTime [DATETIME] NULL

);

 END

 --清理过期日志

 DELETE FROM [dbo].KDBlockInfoLog

 WHERE createTime < Dateadd(DAY, -@block_retention_time, Cast (Getdate() AS DATE))

 END

WHILE @LoopCheckCount <= 60

 BEGIN

 -- 构造需要杀死的会话ID列表，并准备KILL命令

 SELECT @KillCommands = 'KILL ' + Cast(session_id AS VARCHAR(10)) + ';'

 FROM (SELECT DISTINCT r.session_id

 FROM sys.dm_exec_requests r

 WHERE r.command = 'DBCC'

 AND r.start_time <= @Threshold) AS SessionsToKill; --执行时间超过@worktime的就杀掉

 -- 检查是否有需要执行的KILL命令

 IF Len(@KillCommands) > 0

 BEGIN

 --判断是否需要记录阻塞信息

 IF @record_block_flag = 1

 BEGIN

 INSERT INTO KDBlockInfoLog

 (blocktype,

 DBNAME,

 BlockEntityId,

 resourceDescription,

 requestMode,

 requestSessionId,

 waitDuration_ms,

 waitBatchSql,

 waitSql,

 blockingSessionId,

 blockingBatchSql,

 createTime)

 SELECT t1.resource_type AS [锁类型],

 Db_name(resource_database_id) AS [数据库名],

 t1.resource_associated_entity_id AS [阻塞资源对象],

 t1.resource_description AS [资源描述信息],

 t1.request_mode AS [请求的锁],

 t1.request_session_id AS [等待会话],

 t2.wait_duration_ms AS [等待时间],

 (SELECT [text]

 FROM sys.dm_exec_requests AS r WITH (NOLOCK)

 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle])

 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的批SQL],

 (SELECT Substring(qt.[text], r.statement_start_offset / 2, (CASE

 WHEN r.statement_end_offset = -1 THEN Len(CONVERT(NVARCHAR(max), qt.[text])) * 2

 ELSE r.statement_end_offset

 END) / 2)

 FROM sys.dm_exec_requests AS r WITH (NOLOCK)

 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle]) AS qt

 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的SQL],

 t2.blocking_session_id AS [阻塞会话],

 (SELECT [text]

 FROM sys.sysprocesses AS p

 CROSS APPLY sys.Dm_exec_sql_text(p.[sql_handle])

 WHERE p.spid = t2.blocking_session_id) AS [阻塞会话执行的批SQL],

						 getdate()

 FROM sys.dm_tran_locks AS t1 WITH (NOLOCK)

 INNER JOIN sys.dm_os_waiting_tasks AS t2 WITH (NOLOCK)

 ON t1.lock_owner_address = t2.resource_address

 END

 -- 执行KILL命令

 EXEC Sp_executesql

 @KillCommands;

 SET @message= N'Finished killing sessions. '

 + @KillCommands;

 SET @KillCommands = ''

 RAISERROR(@message,0,1);

 END

 ELSE

 BEGIN

 SET @message= N'No sessions to kill. ';

 RAISERROR(@message,0,1);

 END

 SET @LoopCheckCount = @LoopCheckCount + 1;

 WAITFOR DELAY '00:00:01'; --等待1秒

 END;

image26.png
p3: 1)
&R
FER
&l
FER
& B
» BiF

HE
TREE
DB
b4

BE
ik

[B - 2ERS IS HERESEY

TwE ~ O %

I (L)

Ei 100

FERL(E)

g (E)

i (B)

image27.png
% sQlQueryl2:sql - k3clouddb.AIS20240711192106 (sa (51) - Microsoft SQL Server Management Studio HRERER) (Ctrl+Q) p - B n

XD RSO WEY REE IRD HOW =2WMH
C-o|B-u-amd AxEEIN BRRRAS| A0 - [B] | workime meEe-.
| [ais20240711192106 -] b 500 | | | | |

2 (69)" SQLQuery10
= f Y [
@ DWDiagnostics.
@ DWQueue
§ K3DBConfiger20247115255934 (B:)
- =ae
= EsEE
BT]
= s
= =T
¥ PolyBase
5 1 Always On REIFEHE
o = e
© W8 k3cloud-ag (EB)
5 = TEERE
7 081 (=8)
1 D2 (am)
o = TEEEE
@ AIS20240711152106
@ AIS20240711152106Log
B K3DBConfiger20247115255934
- TR
-
¥ Integration Services B
© & QL Server K2
EEy
[syspolicy_purge_history
H SsusEssER
I ESKEEEERE Subplan 1
D ESTEsEEE Subplan 1
D ERES R
D SRS IERERRL

image28.png
[St - BRESNESEIEE - o x
Ao T - @#
2un
»m
® it
» R FEEQ B
3
» B #8100 GRARGED] v
HB @ Fdide |
o
S
it
= ER®
b SEEEEE EJE
] T ozijees 17z
- Exizpea e/ 14:3m:2t
2 - i o476/ 0:00:0
1 =)

image29.png
B rUsERE - BRESERsIER
ps:y o

& B
» 58

- @

SR

IBEER

BRESMEFIEE

E=4t

Transact-50L B2 (1-59L)

FEATRI(R)

AR (0)
g o

70O
E3: 10

PECLARE Seurventiablunane VARG o)
DECLARE @delini tor CHAR(I) =

DECLARE @stertindex TNT = 1

[DECLARE @f sqmentpercent FLOAT

PR a1 ey ST

BET Gnosxectabs= T BIS OFERATELOGBK, T_FAS_OPERATELDGEL.S -

EHO
R
HE
b SEEEEE
AR R SRS | SR
SHIFEN=HAFHEEE AR
@noexectabsBHIETEHHRIE
ek

HE

DECLIRE @noscactabiion T
DECLARE @exeotabalan TNT

Len(@noexsotabs)
Len(@exectabs)

TF @record_log flag = 1
BECIY
TF NOT BXISTS (SELECT %
FRON - sys. objects
objest_id = Obje
D type N (X
—BREEER
BECTY
FRETR TARTE [dhal KiTndestiaint emancelne

image30.emf
碎片率高的索引重 建脚本 .txt

��Ƭ�ʸߵ������ؽ��ű� .txt
IF Object_id('tempdb..#temp_table_info') <> 0

 DROP TABLE #temp_table_info

IF Object_id('tempdb..#indexinfo') <> 0

 DROP TABLE #indexinfo

-- 创建临时表

CREATE TABLE #temp_table_info

 (

 TABLE_NAME SYSNAME

);

CREATE TABLE #indexinfo

 (

 id INT IDENTITY(1, 1),

 object_name SYSNAME,

 fragmentpercent FLOAT,

 execsql SYSNAME,

 objsize_mb FLOAT

);

go

SET nocount ON

DECLARE @record_log_flag BIT = 1 --记录索引重建优化的详细日志到表中，0表示false,1表示true

DECLARE @log_retention_time INT = 7 --日志保留时间，单位是天

DECLARE @i INT

DECLARE @icount INT

DECLARE @sql AS VARCHAR(max)

DECLARE @tbsize AS DECIMAL(19, 3)

DECLARE @driversize AS INT

DECLARE @logunusedsize INT=0

DECLARE @message VARCHAR(300)

DECLARE @tbname SYSNAME

DECLARE @begintime DATETIME

DECLARE @tmpbegintime DATETIME

DECLARE @tmpendtime DATETIME

DECLARE @tmpDurationInSeconds INT

DECLARE @worktime INT = 60

DECLARE @work_end_time DATETIME --任务截至时间

DECLARE @worktimeflag BIT

DECLARE @exectabs VARCHAR(max) = ''

DECLARE @noexectabs VARCHAR(max) = ''

DECLARE @checklogsize BIT=0

DECLARE @currenttablename VARCHAR(max)

DECLARE @delimiter CHAR(1) = ','

DECLARE @startindex INT = 1

DECLARE @fragmentpercent FLOAT

----------可人工调整的部分开始----------

--SET @worktime = 30 --允许脚本执行的工作时间，单位为分钟，默认为1个小时（0表示不限制工作时间，直至所有符合条件的索引重建完成）

--SET @noexectabs='T_BAS_OPERATELOGBK,T_BAS_OPERATELOGBK_S'--人工指定对某些表不进行重建索引，格式为't3,t4',默认为''(即不指定,对全库碎片率超过5的索引进行重建优化)

----------可人工调整的部分结束----------

DECLARE @noexectabslen INT = Len(@noexectabs);

DECLARE @exectabslen INT = Len(@exectabs);

IF @record_log_flag = 1

 BEGIN

 IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDIndexMaintenanceLog]')

 AND type IN (N'U'))

 --创建日志表

 BEGIN

 CREATE TABLE [dbo].KDIndexMaintenanceLog

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 [TableName] SYSNAME NOT NULL,

 objsize_mb FLOAT NOT NULL,

 [AvgFragmentationInPercent] [FLOAT] NOT NULL,

 execsql [NVARCHAR](200),

 [RebuildStartTime] [DATETIME] NULL,

 [RebuildEndTime] [DATETIME] NULL,

 [DurationInSeconds] [INT] NULL

);

 --创建索引

 CREATE NONCLUSTERED INDEX IX_KDIndexMaintenanceLog

 ON KDIndexMaintenanceLog (TableName, RebuildStartTime);

 END

 --清理过期日志

 DELETE FROM [dbo].KDIndexMaintenanceLog

 WHERE [RebuildStartTime] < Dateadd(DAY, -@log_retention_time, Cast (Getdate() AS DATE))

 END

IF @worktime > 0

 BEGIN

 SET @work_end_time= Dateadd(MINUTE, @worktime, Getdate())

 SET @worktimeflag=1

 END

ELSE

 SET @worktimeflag=0

--判断sql server版本是否高于2008 r2

IF (Cast(Serverproperty('ProductMajorVersion') AS INT) > 10

 OR (Cast(Serverproperty('ProductMajorVersion') AS INT) = 10

 AND Cast(Serverproperty('ProductMinorVersion') AS INT) >= 50))

 SET @checklogsize=1

IF (@worktimeflag = 1

 AND @work_end_time <= Getdate())

 BEGIN

 SET @message=N'停止执行。当前系统时间为：'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N'超过了任务截至时间:' + @work_end_time

 RAISERROR(@message,0,1);

 RETURN

 END;

SET @message=N'开始获取需要优化的表'

 + CONVERT(VARCHAR(30), Getdate(), 121)

RAISERROR(@message,0,1);

IF Len(Ltrim(Rtrim(@exectabs))) > 0

 BEGIN

 SET @startindex=1

 WHILE @startindex <= @exectabslen

 BEGIN

 SET @currenttablename = Ltrim(Rtrim(Substring(@exectabs, @startindex, CASE

 WHEN Charindex(@delimiter, @exectabs, @startindex) = 0 THEN 8000

 ELSE Charindex(@delimiter, @exectabs, @startindex) - @startindex

 END)));

 INSERT INTO #temp_table_info

 (TABLE_NAME)

 VALUES (@currenttablename);

 SET @startindex = CASE

 WHEN Charindex(@delimiter, @exectabs, @startindex) = 0 THEN @exectabslen + 1

 ELSE Charindex(@delimiter, @exectabs, @startindex)

 + 1

 END;

 END;

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'

 AND so.NAME IN(SELECT TABLE_NAME

 FROM #temp_table_info)),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 30 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

ELSE IF Len(Ltrim(Rtrim(@noexectabs))) > 0

 BEGIN

 SET @startindex=1

 WHILE @startindex <= @noexectabslen

 BEGIN

 SET @currenttablename = Ltrim(Rtrim(Substring(@noexectabs, @startindex, CASE

 WHEN Charindex(@delimiter, @noexectabs, @startindex) = 0 THEN 8000

 ELSE Charindex(@delimiter, @noexectabs, @startindex) - @startindex

 END)));

 INSERT INTO #temp_table_info

 (TABLE_NAME)

 VALUES (@currenttablename);

 SET @startindex = CASE

 WHEN Charindex(@delimiter, @noexectabs, @startindex) = 0 THEN @noexectabslen + 1

 ELSE Charindex(@delimiter, @noexectabs, @startindex)

 + 1

 END;

 END;

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'

 AND so.NAME NOT IN(SELECT TABLE_NAME

 FROM #temp_table_info)),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 30 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

ELSE

 BEGIN

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 30 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

SET @icount=(SELECT Count(1)

 FROM #indexinfo);

SET @message=N'结束获取需要优化的表'

 + CONVERT(VARCHAR(30), Getdate(), 121)

RAISERROR(@message,0,1);

IF @icount = 0

 BEGIN

 SET @message=N'数据库：' + Db_name() + N'不需要优化'

 RAISERROR(@message,0,1);

 RETURN

 END;

SET @begintime=Getdate()

SET @message=N'数据库：' + Db_name() + N'，开始时间： '

 + CONVERT(VARCHAR(30), @begintime, 121)

 + N' 总共需要执行:' + Cast(@icount AS VARCHAR)

 + N' 条语句'

RAISERROR(@message,0,1);

SET @i=1

WHILE @i <= @icount

 BEGIN

 SELECT @sql = execsql,

 @tbsize = objsize_mb,

 @tbname = object_name,

 @fragmentpercent = fragmentpercent

 FROM #indexinfo

 WHERE id = @i

 IF(@checklogsize = 1)

 BEGIN

 SELECT @driversize = Cast(Cast(available_bytes AS DECIMAL) / (1024 * 1024) AS BIGINT)

 FROM sys.master_files AS f

 CROSS APPLY sys.Dm_os_volume_stats(f.database_id, f.file_id)

 WHERE f.database_id = Db_id()

 AND f.type_desc = 'LOG';

 SELECT @logunusedsize = (total_log_size_in_bytes - used_log_space_in_bytes) / 1024 / 1024

 FROM sys.dm_db_log_space_usage

 IF @i = 1

 BEGIN

 SET @message=N'日志可用空间为(MB)：'

 + Cast(@logunusedsize AS VARCHAR)

 + N';磁盘可用空间为(MB)：'

 + Cast(@driversize AS VARCHAR)

 RAISERROR(@message,0,1);

 END;

 END

 IF (@worktimeflag = 1

 AND @work_end_time <= Getdate())

 BEGIN

 SET @message=N'停止执行。因为当前系统时间为：'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N'超过了开始工作时间范围'

 + CONVERT(VARCHAR(30), @work_end_time, 121)

 + N'不允许执行优化计划'

 RAISERROR(@message,0,1);

 RETURN

 END

 IF (@tbsize > (@driversize + @logunusedsize)

 AND @checklogsize = 1)

 BEGIN

 SET @message=N'磁盘可用空间和日志可用空间不足，执行终止。原因：表:' + @tbname

 + N'总需空间大小(MB)：' + Cast(@tbsize AS VARCHAR)

 + N';日志可用空间为(MB)：'

 + Cast(@logunusedsize AS VARCHAR)

 + N';磁盘可用空间为(MB)：'

 + Cast(@driversize AS VARCHAR)

 RAISERROR(@message,16,1);

 RETURN

 END

 ELSE

 BEGIN

 SET @message= Cast(@i AS VARCHAR) + '/'

 + Cast(@icount AS VARCHAR) + N'('

 + Cast(@tbsize AS VARCHAR) + 'MB)：' + @tbname

 SET @tmpbegintime=Getdate()

 IF @record_log_flag = 1

 BEGIN

 --记录日志

 INSERT INTO KDIndexMaintenanceLog

 (TableName,

 objsize_mb,

 AvgFragmentationInPercent,

 execsql,

 RebuildStartTime)

 VALUES (@tbname,

 @tbsize,

 @fragmentpercent,

 @sql,

 @tmpbegintime)

 END

 EXEC(@sql)

 SET @tmpendtime=Getdate()

 SET @tmpDurationInSeconds = Datediff(second, @tmpbegintime, @tmpendtime)

 IF @record_log_flag = 1

 BEGIN

 --更新日志表中索引优化完成时间

 UPDATE KDIndexMaintenanceLog

 SET RebuildEndTime = @tmpendtime,

 DurationInSeconds = @tmpDurationInSeconds

 WHERE TableName = @tbname

 AND RebuildStartTime = @tmpbegintime;

 END

 SET @message=@message + N':'

 + Cast (@tmpDurationInSeconds AS NVARCHAR)

 + N'秒'

 RAISERROR(@message,0,1);

 END

 SET @i=@i + 1

 END

SET @message=N'数据库：' + Db_name() + N'，结束时间： '

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N' 总耗时(秒)：'

 + Cast(Datediff(ss, @begintime, Getdate()) AS VARCHAR)

RAISERROR(@message,0,1);

image31.png
@ st

E=

A4 A E)
e
FrartiE(D) 0:00:00 :
SFREEG: 23595 :
O 4REME 2024/ 8/29
© FRARELQ)

s (5) EBIT
2024/ /29
%
EREES

» BHEAW: 00:00

t <] i

HadiE

FraEHAD) 2024/ B/28

i

HEA(E)

[TEERAY 0:00:00 $hfT o I 2024/5/29 FreafERRI-

image32.png
i sQLQuerylt.sql - k3clouddb.AIS20240711192106 (sa (69)* - Microsoft SQL Server Management Studio HRERER) (Ctrl+Q) p - O n
XHO 8O WEY ZIQ WEE IRD BOW HEE
©-o[8- oM 2N 2R Ldal9-c-[8] | workime
S | AIS20240711192106 - || b HEX) s 5[] 2" 82 & £ | | % -

o RATSERFOR (@nessage. 0. 1)

= @ k3clouddb (SQL Server 15.0.2000.5 - sa)
& & s
- s
o
@ A1S20240711192106 (EE)
@ A1S20240711192106Log (EF2)
@ DWConfiguration
@ DWDiagnostics.
@ DWaueue
@ K3DBConfiger20247115255034 (EF:5)
- =t
= BEEve
B
= A
= TR
¥ PolyBase
1 Always On SARHE
L)

11 Integration Services B
& 5QL Server 2
& &

BEEE: ATS20240711192106, FHEARTE): 2024-08-30 09:31:19.997 SHEEHIT:211 £iE6)
BRAIRSES 0m): 128 METTRSEN 08) : 16289
[ESKESSETEE Subplan 1 1/211(0.258MB) : KDIndexMaintenancelog: 1#
[ESTREsERE(Subplan_1 2/211(0.0165) : T_AM_REPORTSTYLECOLUMN: 08
o felsEERE 3/211(0.0164E) : T_AY REBORTSTYLEROW: 08
i 4/211(0.0554B) : T_AP_FIELDCONFIG:0F)
= 5/211(0.0164B) : T_APM_MONITORENTITY: 0B}
AR 6/211(0.0164B) : T_BAS_ASSISTANTDATA: 0¥
- RE 7/211(0.03145) : T_EAS_ASSISTANTDATA L:0B>
o mEEE 8/211(0.0168) : T_BAS_BILLEDIMAP: 0
9/211(0.0164B) : T_BAS_BILLKEYFIELDEDIMAD: 0%
[XEvent RER 10/211(0.016¥B) : T_BAS_BILLNOREPATRMAR: 0}
11/211(0.016YB) : T_BAS_BSBILLMAD: 0¥}
12/211(0.031MB): T BAS BSEMAPENTITY:CH#
00% -

image33.png
= sl
p3: 1)
& E
FER
&l
FER
& B
» BiF

HE
TREE
DB
b4

BE

ik

TwE ~ O %
g
FilE©)
28I(Cc)

HER (D)

B E

Rz (4]

image34.png
':

B FREwEE
p3:y
& B
» 58

IBEER

2BT)
Transact-5QL B (1-59L)

BEESKE, SHRE Zane
BES I ERRIRE

HHRRE (D) ATSZ0240711192106

e
RO,

=0

2 £G)

fre 0]

s BH@

IR R RS HES | SRS

ﬁgﬁﬂﬂﬁﬂﬂ?ﬁﬁ

ik

— EEE
DECDAGE Grssord Vlock flug BIT =
TECDAE @llock FecantTon. sine

DEELMRE G ehold DATEIE
DECIARE @Ki11Conmands WVARCHAROGAL
DECLARE Gnessae VARCHAR(300): —H
DECLARE bTockinfo IVARCHAR (nax)

iw MFTRFAFEEFIM
ITE, ~Grorktine, Getdate())

it
SET GowsthestConnt = 1

¥ @racord block_flag = 1
BECIY

TF NOT BXISTS (SELECT %
FRON - sys. objects
e e TS e $408]

T—5m

image35.emf
碎片率高的索引重 建监控脚本.txt

��Ƭ�ʸߵ������ؽ���ؽű�.txt
-- 声明变量

DECLARE @record_block_flag BIT = 1 --记录阻塞信息到表中，0表示false,1表示true

DECLARE @block_retention_time INT = 7 --阻塞信息保留时间，单位是天，默认保留1天

DECLARE @LoopCheckCount INT; --循环检查次数，避免漏kill掉

DECLARE @worktime INT = 60

DECLARE @Threshold DATETIME

DECLARE @KillCommands NVARCHAR(MAX) = '';

DECLARE @message VARCHAR(300); --日志信息

DECLARE @blockinfo NVARCHAR(max)

----------需要人工调整的部分开始----------

--SET @worktime = 30 --单位为分钟,30表示最长允许重建索引脚本时间执行半个小时 ，要与索引重建优化脚本中的@worktime保持一致

----------需要人工调整的部分结束----------

SET @Threshold =Dateadd(MINUTE, -@worktime, Getdate());

SET @LoopCheckCount = 1

IF @record_block_flag = 1

 BEGIN

 IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDBlockInfoLog]')

 AND type IN (N'U'))

 --创建阻塞信息表

 BEGIN

 CREATE TABLE [dbo].KDBlockInfoLog

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 blocktype NVARCHAR(200) NOT NULL,

 DBNAME NVARCHAR(200) NOT NULL,

 BlockEntityId BIGINT NOT NULL,

 resourceDescription [NVARCHAR](200),

 requestMode [NVARCHAR](200),

 requestSessionId INT,

 waitDuration_ms BIGINT,

 waitBatchSql NVARCHAR(max),

 waitSql NVARCHAR(max),

 blockingSessionId SMALLINT,

 blockingBatchSql NVARCHAR(max),

 createTime [DATETIME] NULL

);

 END

 --清理过期日志

 DELETE FROM [dbo].KDBlockInfoLog

 WHERE createTime < Dateadd(DAY, -@block_retention_time, Cast (Getdate() AS DATE))

 END

WHILE @LoopCheckCount <= 60

 BEGIN

 -- 构造需要杀死的会话ID列表，并准备KILL命令

 SELECT @KillCommands = 'KILL ' + Cast(session_id AS VARCHAR(10)) + ';'

 FROM (SELECT DISTINCT r.session_id

 FROM sys.dm_exec_requests r

 WHERE r.command = 'DBCC'

 AND r.start_time <= @Threshold) AS SessionsToKill; --执行时间超过@worktime的就杀掉

 -- 检查是否有需要执行的KILL命令

 IF Len(@KillCommands) > 0

 BEGIN

 --判断是否需要记录阻塞信息

 IF @record_block_flag = 1

 BEGIN

 INSERT INTO KDBlockInfoLog

 (blocktype,

 DBNAME,

 BlockEntityId,

 resourceDescription,

 requestMode,

 requestSessionId,

 waitDuration_ms,

 waitBatchSql,

 waitSql,

 blockingSessionId,

 blockingBatchSql,

 createTime)

 SELECT t1.resource_type AS [锁类型],

 Db_name(resource_database_id) AS [数据库名],

 t1.resource_associated_entity_id AS [阻塞资源对象],

 t1.resource_description AS [资源描述信息],

 t1.request_mode AS [请求的锁],

 t1.request_session_id AS [等待会话],

 t2.wait_duration_ms AS [等待时间],

 (SELECT [text]

 FROM sys.dm_exec_requests AS r WITH (NOLOCK)

 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle])

 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的批SQL],

 (SELECT Substring(qt.[text], r.statement_start_offset / 2, (CASE

 WHEN r.statement_end_offset = -1 THEN Len(CONVERT(NVARCHAR(max), qt.[text])) * 2

 ELSE r.statement_end_offset

 END) / 2)

 FROM sys.dm_exec_requests AS r WITH (NOLOCK)

 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle]) AS qt

 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的SQL],

 t2.blocking_session_id AS [阻塞会话],

 (SELECT [text]

 FROM sys.sysprocesses AS p

 CROSS APPLY sys.Dm_exec_sql_text(p.[sql_handle])

 WHERE p.spid = t2.blocking_session_id) AS [阻塞会话执行的批SQL],

						 getdate()

 FROM sys.dm_tran_locks AS t1 WITH (NOLOCK)

 INNER JOIN sys.dm_os_waiting_tasks AS t2 WITH (NOLOCK)

 ON t1.lock_owner_address = t2.resource_address

 END

 -- 执行KILL命令

 EXEC Sp_executesql

 @KillCommands;

 SET @message= N'Finished killing sessions. '

 + @KillCommands;

 SET @KillCommands = ''

 RAISERROR(@message,0,1);

 END

 ELSE

 BEGIN

 SET @message= N'No sessions to kill. ';

 RAISERROR(@message,0,1);

 END

 SET @LoopCheckCount = @LoopCheckCount + 1;

 WAITFOR DELAY '00:00:01'; --等待1秒

 END;

image36.png
=

@ st - O

X

E SREBELD
RS e v BeR®
=%
B 2024/ 8/29 BED 173428 3
E
i B3 =

FrartiE(D) 0:00:00
SFREEG: 23595

HadiE
FraEHAD) 2024/ B/28 O 4REME 2024/ 8/29
© FRARELQ)
i
HEA(E) TEBFM 1:10:00 AT 5k 2024/8/29 FriaERHEIl

image37.png
i sQLQuerylt.sql - k3clouddb.AIS20240711192106 (sa (69)* - Microsoft SQL Server Management Studio HRERER) (Ctrl+Q) p - O n

X#O SEO HEY WEE IR0 S0W =HE
C-o|B-u-amd AxEEIN BRRRAS| A0 - [B] | workime
| [Ais202a0711192108 | > w0 | | | | |

& RATSERFOR (@nessage. 0. 1)

= @ k3clouddb (SQL Server 15.0.2000.5 - sa)
& & s
- s
o
@ A1S20240711192106 (EE)
@ A1S20240711192106Log (EF2)
@ DWConfiguration
@ DWDiagnostics.
@ DWaueue
@ K3DBConfiger20247115255034 (EF:5)
- =t
= BEEve
B
= A
= TR
¥ PolyBase
1 Always On SARHE
L)

11 Integration Services B
& 5QL Server 2
& &

[syspolicy_purge_history

M BREmOESSIER

[2= - BEEE: ATS20240711192106, FHEARTE): 2024-08-30 09:31:19.997 SHEEHIT:211 £iE6)

| RSSSEeeaS MEM LA EREIREEDS 0m) : 120, MEFREED 05): 10209

[E=HESEETER Subplan_1 1/211(0.258MB) : KDIndexMaintenancelog: 18}
2/211(0-016¥8) : T_AM_REPORTSTYLECOLDMI: 0%
3/211(0.0164B) : T_AM_REPORTSTYLEROW: 0%
1/211(0.055UB) : T_AP_FIELDCONFIG: 08
5/211(0.0164B) : T_APM_MONTTORENTITY: 0F%
6/211(0.0164B) : T_BAS_ASSTSTANTDATA: 0B
7/211(0-0314B) : T_BAS_ASSISTANTDATA L:0f
8/211(0.0164B) : T_BAS_BILLEDIVAP: 08
9/211(0.0164B) : T_BAS_BILLKEYFIELDEDIVAP: 0B
10/211(0.0164B) ; T_BAS_BILLNOREPATRUAP: 0F>
11/211(0.01648) ; T_BAS_BSBILLVAP: 08
12/211(0.031MB): T BAS BSEMAPENTITY:0f)

0% -

image38.png
E st - BSUSESIEE - x
Ao T - @#
2un
»m :
o = Eilzzz =2l
» R HEEO B
3
» B #8100 GRARGED]
WA E
o
S
it
= ER®
b SEEEEE EJE
T ozijees 17z
- Exizpea ozeje/es 174540
e i
= -
i

image39.png
& rUsERE - SousTRsIER o
o Tut - @
50
»ES
1)
Transact-SAL. B (T-5AL)
EIRHE
HiRE D ATS20240711192106 -
oy ECE Gverkins T = 60 B
d DECLARE Guork snd_tine IATETDE —(E5HENA
I
DECLARE Gunestabs s
IR0 |DECLARE &\}a\exE]ﬂt-‘aX VARCHAR (n
: DECLAE Gehechdozsize BI1-0
SEW DECLARE Gour ant okl snans VARCHAR)
DECLARE @delimiter CHAR(1) =",
EHI© | [TECLSE Gatartindus I = 1
DECLAE Gir somentpercent FLOAT
RO 7
BH® B
DECLAE Gnocksstabslon TN = Lon(@noercctabs)
DECLARE @exectabslen INT = Len(@exectabs)
IF @regord Loz flag = 1
e (SELECT
Tr w1 mIsts x
MRSV RS IR FROL sy objects |
SHEAMNEEHEBEIAT @exectals B # WHERE. ::f:;;:dﬂ D(bi(e‘crtiagl(l\' [dbo]. [KDIndexMaintenanceLog]’)
EEREN TR EENE R

CREATE TLE Lib. Milndentint emascalog

1 INT IDENTITY(1, 1) PRIWARY KEY, — EETDEXERE
[Tableane] SISHAIE NOT WL,

gbisizenb FLOKT WOT WL,

[vaFragentationtapersent] [FLOKT] WOT ML,

axecsal [WARCIAR] (200),

[Rebuildstar Tine] [DATETDE] WL,

[RebuildEndTine] [DATETDIE] WL,

;. burstioniaSeconds] [T ol
—BEEFs|

CREATE NONCLUSTERED TNDEX % KMndelsintensnoelos
ON KTnderdisintenancelog (Tablelane, RebuildStartTine)
m

—mE

DELETE PRI [dbo]. MDIndeglfaintensnceLog

WIERE [RebuildStar Tine] < Dateadd (DK, ~Glog_retention_tine, Cost (Getdate() AS DATE))
m

<

image40.emf
部分业务表索引重 建脚本.txt

����ҵ��������ؽ��ű�.txt
IF Object_id('tempdb..#temp_table_info') <> 0

 DROP TABLE #temp_table_info

IF Object_id('tempdb..#indexinfo') <> 0

 DROP TABLE #indexinfo

-- 创建临时表

CREATE TABLE #temp_table_info

 (

 TABLE_NAME SYSNAME

);

CREATE TABLE #indexinfo

 (

 id INT IDENTITY(1, 1),

 object_name SYSNAME,

 fragmentpercent FLOAT,

 execsql SYSNAME,

 objsize_mb FLOAT

);

go

SET nocount ON

DECLARE @record_log_flag BIT = 1 --记录索引重建优化的详细日志到表中，0表示false,1表示true

DECLARE @log_retention_time INT = 7 --日志保留时间，单位是天

DECLARE @i INT

DECLARE @icount INT

DECLARE @sql AS VARCHAR(max)

DECLARE @tbsize AS DECIMAL(19, 3)

DECLARE @driversize AS INT

DECLARE @logunusedsize INT=0

DECLARE @message VARCHAR(300)

DECLARE @tbname SYSNAME

DECLARE @begintime DATETIME

DECLARE @tmpbegintime DATETIME

DECLARE @tmpendtime DATETIME

DECLARE @tmpDurationInSeconds INT

DECLARE @worktime INT = 60

DECLARE @work_end_time DATETIME --任务截至时间

DECLARE @worktimeflag BIT

DECLARE @exectabs VARCHAR(max) = ''

DECLARE @noexectabs VARCHAR(max) = ''

DECLARE @checklogsize BIT=0

DECLARE @currenttablename VARCHAR(max)

DECLARE @delimiter CHAR(1) = ','

DECLARE @startindex INT = 1

DECLARE @fragmentpercent FLOAT

----------可人工调整的部分开始----------

--SET @worktime = 30 --允许脚本执行的工作时间，单位为分钟，默认为1个小时（0表示不限制工作时间，直至所有符合条件的索引重建完成）

SET @exectabs='T_META_OBJECTTYPE,T_META_CONVERTRULE,T_SEC_FUNCPERMISSIONENTRY,T_BAS_NETWORKCTRLMUTEX,T_BOS_INSTALLEDITEM' --人工指定对某些表进行重建索引，格式为't1,t2',默认为''(即不指定,对全库碎片率超过5的索引进行重建优化)

----------可人工调整的部分结束----------

DECLARE @noexectabslen INT = Len(@noexectabs);

DECLARE @exectabslen INT = Len(@exectabs);

IF @record_log_flag = 1

 BEGIN

 IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDIndexMaintenanceLog]')

 AND type IN (N'U'))

 --创建日志表

 BEGIN

 CREATE TABLE [dbo].KDIndexMaintenanceLog

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 [TableName] SYSNAME NOT NULL,

 objsize_mb FLOAT NOT NULL,

 [AvgFragmentationInPercent] [FLOAT] NOT NULL,

 execsql [NVARCHAR](200),

 [RebuildStartTime] [DATETIME] NULL,

 [RebuildEndTime] [DATETIME] NULL,

 [DurationInSeconds] [INT] NULL

);

 --创建索引

 CREATE NONCLUSTERED INDEX IX_KDIndexMaintenanceLog

 ON KDIndexMaintenanceLog (TableName, RebuildStartTime);

 END

 --清理过期日志

 DELETE FROM [dbo].KDIndexMaintenanceLog

 WHERE [RebuildStartTime] < Dateadd(DAY, -@log_retention_time, Cast (Getdate() AS DATE))

 END

IF @worktime > 0

 BEGIN

 SET @work_end_time= Dateadd(MINUTE, @worktime, Getdate())

 SET @worktimeflag=1

 END

ELSE

 SET @worktimeflag=0

--判断sql server版本是否高于2008 r2

IF (Cast(Serverproperty('ProductMajorVersion') AS INT) > 10

 OR (Cast(Serverproperty('ProductMajorVersion') AS INT) = 10

 AND Cast(Serverproperty('ProductMinorVersion') AS INT) >= 50))

 SET @checklogsize=1

IF (@worktimeflag = 1

 AND @work_end_time <= Getdate())

 BEGIN

 SET @message=N'停止执行。当前系统时间为：'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N'超过了任务截至时间:' + @work_end_time

 RAISERROR(@message,0,1);

 RETURN

 END;

SET @message=N'开始获取需要优化的表'

 + CONVERT(VARCHAR(30), Getdate(), 121)

RAISERROR(@message,0,1);

IF Len(Ltrim(Rtrim(@exectabs))) > 0

 BEGIN

 SET @startindex=1

 WHILE @startindex <= @exectabslen

 BEGIN

 SET @currenttablename = Ltrim(Rtrim(Substring(@exectabs, @startindex, CASE

 WHEN Charindex(@delimiter, @exectabs, @startindex) = 0 THEN 8000

 ELSE Charindex(@delimiter, @exectabs, @startindex) - @startindex

 END)));

 INSERT INTO #temp_table_info

 (TABLE_NAME)

 VALUES (@currenttablename);

 SET @startindex = CASE

 WHEN Charindex(@delimiter, @exectabs, @startindex) = 0 THEN @exectabslen + 1

 ELSE Charindex(@delimiter, @exectabs, @startindex)

 + 1

 END;

 END;

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'

 AND so.NAME IN(SELECT TABLE_NAME

 FROM #temp_table_info)),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 30 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

ELSE IF Len(Ltrim(Rtrim(@noexectabs))) > 0

 BEGIN

 SET @startindex=1

 WHILE @startindex <= @noexectabslen

 BEGIN

 SET @currenttablename = Ltrim(Rtrim(Substring(@noexectabs, @startindex, CASE

 WHEN Charindex(@delimiter, @noexectabs, @startindex) = 0 THEN 8000

 ELSE Charindex(@delimiter, @noexectabs, @startindex) - @startindex

 END)));

 INSERT INTO #temp_table_info

 (TABLE_NAME)

 VALUES (@currenttablename);

 SET @startindex = CASE

 WHEN Charindex(@delimiter, @noexectabs, @startindex) = 0 THEN @noexectabslen + 1

 ELSE Charindex(@delimiter, @noexectabs, @startindex)

 + 1

 END;

 END;

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'

 AND so.NAME NOT IN(SELECT TABLE_NAME

 FROM #temp_table_info)),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 30 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

ELSE

 BEGIN

 WITH t

 AS (SELECT SO.NAME AS object_name,

 SI.NAME AS index_name,

 IPS.avg_fragmentation_in_percent,

 (page_count * 8.0 / 1024.0) AS size_in_mB,

 si.type_desc

 FROM sys.Dm_db_index_physical_stats(Db_id(), NULL, NULL, NULL, NULL) IPS

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

 AND index_level = 0

 AND SI.NAME IS NOT NULL

 AND SO.is_ms_shipped = 0

 AND so.NAME NOT LIKE 'tmp%'

 AND so.NAME NOT LIKE 'z%'

 AND so.NAME NOT LIKE 'gle%'),

 m

 AS (SELECT object_name,

 Max(avg_fragmentation_in_percent) fragmentpercent,

 CASE

 WHEN Max(avg_fragmentation_in_percent) >= 30 THEN 'dbcc dbreindex(' + object_name

 + ') with no_infomsgs'

 ELSE ''

 END execsql,

 Sum(size_in_mB) objsize_mb

 FROM t

 WHERE avg_fragmentation_in_percent > 0

 GROUP BY object_name)

 INSERT INTO #indexinfo

 SELECT m.*

 FROM m

 WHERE m.execsql <> ''

 ORDER BY 2 DESC

 END

SET @icount=(SELECT Count(1)

 FROM #indexinfo);

SET @message=N'结束获取需要优化的表'

 + CONVERT(VARCHAR(30), Getdate(), 121)

RAISERROR(@message,0,1);

IF @icount = 0

 BEGIN

 SET @message=N'数据库：' + Db_name() + N'不需要优化'

 RAISERROR(@message,0,1);

 RETURN

 END;

SET @begintime=Getdate()

SET @message=N'数据库：' + Db_name() + N'，开始时间： '

 + CONVERT(VARCHAR(30), @begintime, 121)

 + N' 总共需要执行:' + Cast(@icount AS VARCHAR)

 + N' 条语句'

RAISERROR(@message,0,1);

SET @i=1

WHILE @i <= @icount

 BEGIN

 SELECT @sql = execsql,

 @tbsize = objsize_mb,

 @tbname = object_name,

 @fragmentpercent = fragmentpercent

 FROM #indexinfo

 WHERE id = @i

 IF(@checklogsize = 1)

 BEGIN

 SELECT @driversize = Cast(Cast(available_bytes AS DECIMAL) / (1024 * 1024) AS BIGINT)

 FROM sys.master_files AS f

 CROSS APPLY sys.Dm_os_volume_stats(f.database_id, f.file_id)

 WHERE f.database_id = Db_id()

 AND f.type_desc = 'LOG';

 SELECT @logunusedsize = (total_log_size_in_bytes - used_log_space_in_bytes) / 1024 / 1024

 FROM sys.dm_db_log_space_usage

 IF @i = 1

 BEGIN

 SET @message=N'日志可用空间为(MB)：'

 + Cast(@logunusedsize AS VARCHAR)

 + N';磁盘可用空间为(MB)：'

 + Cast(@driversize AS VARCHAR)

 RAISERROR(@message,0,1);

 END;

 END

 IF (@worktimeflag = 1

 AND @work_end_time <= Getdate())

 BEGIN

 SET @message=N'停止执行。因为当前系统时间为：'

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N'超过了开始工作时间范围'

 + CONVERT(VARCHAR(30), @work_end_time, 121)

 + N'不允许执行优化计划'

 RAISERROR(@message,0,1);

 RETURN

 END

 IF (@tbsize > (@driversize + @logunusedsize)

 AND @checklogsize = 1)

 BEGIN

 SET @message=N'磁盘可用空间和日志可用空间不足，执行终止。原因：表:' + @tbname

 + N'总需空间大小(MB)：' + Cast(@tbsize AS VARCHAR)

 + N';日志可用空间为(MB)：'

 + Cast(@logunusedsize AS VARCHAR)

 + N';磁盘可用空间为(MB)：'

 + Cast(@driversize AS VARCHAR)

 RAISERROR(@message,16,1);

 RETURN

 END

 ELSE

 BEGIN

 SET @message= Cast(@i AS VARCHAR) + '/'

 + Cast(@icount AS VARCHAR) + N'('

 + Cast(@tbsize AS VARCHAR) + 'MB)：' + @tbname

 SET @tmpbegintime=Getdate()

 IF @record_log_flag = 1

 BEGIN

 --记录日志

 INSERT INTO KDIndexMaintenanceLog

 (TableName,

 objsize_mb,

 AvgFragmentationInPercent,

 execsql,

 RebuildStartTime)

 VALUES (@tbname,

 @tbsize,

 @fragmentpercent,

 @sql,

 @tmpbegintime)

 END

 EXEC(@sql)

 SET @tmpendtime=Getdate()

 SET @tmpDurationInSeconds = Datediff(second, @tmpbegintime, @tmpendtime)

 IF @record_log_flag = 1

 BEGIN

 --更新日志表中索引优化完成时间

 UPDATE KDIndexMaintenanceLog

 SET RebuildEndTime = @tmpendtime,

 DurationInSeconds = @tmpDurationInSeconds

 WHERE TableName = @tbname

 AND RebuildStartTime = @tmpbegintime;

 END

 SET @message=@message + N':'

 + Cast (@tmpDurationInSeconds AS NVARCHAR)

 + N'秒'

 RAISERROR(@message,0,1);

 END

 SET @i=@i + 1

 END

SET @message=N'数据库：' + Db_name() + N'，结束时间： '

 + CONVERT(VARCHAR(30), Getdate(), 121)

 + N' 总耗时(秒)：'

 + Cast(Datediff(ss, @begintime, Getdate()) AS VARCHAR)

RAISERROR(@message,0,1);

image41.png
TwE ~ O %

.o IR

B n =
£ #R EC

BB

2 TEEFA) 0:00:00 T HI 20

Ei 100 FERL(E) g (E) i (B)

image42.png
).5ql - k3clouddb.AIS20240711192106 (sa (77))" - Microsoft SQL Server Management Studio GEERER (Ctrl+Q) P = O x
XHF WKE WEV) WEE) IRM SOW) WEH)
C-olf-u-uMP RN BQRRR| d 0|28

| [ais2 2 | b w00 | |

lmpma-

R ORDER EY 3 DESC.

& 8 kaclouddb (SQL Server 15020005 - sa)
- nEE
@ o EemEE
© S T_JETA OBJECTIYPE, T NETA CONVERTRLE, T_SEC_FUNCFERMISSIONENTRY, T_BAS_NETVORKCTRLIUTEX, T_BOS_THSTALLEDITEN
@ AIS20240711192106 (ER)
W AIS20240711192106Log (ER)
@ DWCorfiguration
@ DWbisgnostics
W DWaueue
@ K3DBConfiger20247115255034 (B
-
- EsEe
-
@ - s
@ - =eTE
4 PolyBase
4 Always On BFRHE
- 0% -4

5 Integration Senvices B LT
8 saLserver 2 [Toldwe “ablerors | tablasizedb | datesize b | fndessiza b | ptablemm
5 -y 37 T_BOS_WEBAPIOPNITELIST B 129% 655 424 0
5D syspolicy purge bistory 3 TIETA CHECTIVPEMEE W e 56 56
) BESHESEETEG Subplan 1 3 TIETAOBJECTINREVIZM s %2 o E3
[F] ESUEERRER.Subplan_1
[ESHELRES ERL

w0 T ovETOn ® 1ot 1040 1
4 TS SURDLEINOLG 1048)
2 TmSyomRELTIGE 1048 a5 FS
s T e 100 o0 1
M TBASISPTLUGPINTR L w2) 150
45 TR LOGISTICSAREATETATL i
s Twrpmocom s »
@ EEEE s Tms SIS .
Xevert RER 8 TIETA COROLIITATL L e

49 TS JULTILAGUAGE L s

T_ESS JULTILANGIAGE

image43.emf
部分业务表索引重 建监控脚本.txt

����ҵ��������ؽ���ؽű�.txt
-- 声明变量

DECLARE @record_block_flag BIT = 1 --记录阻塞信息到表中，0表示false,1表示true

DECLARE @block_retention_time INT = 7 --阻塞信息保留时间，单位是天，默认保留1天

DECLARE @LoopCheckCount INT; --循环检查次数，避免漏kill掉

DECLARE @worktime INT = 60

DECLARE @Threshold DATETIME

DECLARE @KillCommands NVARCHAR(MAX) = '';

DECLARE @message VARCHAR(300); --日志信息

DECLARE @blockinfo NVARCHAR(max)

----------需要人工调整的部分开始----------

--SET @worktime = 30 --单位为分钟,30表示最长允许重建索引脚本时间执行半个小时 ，要与索引重建优化脚本中的@worktime保持一致

----------需要人工调整的部分结束----------

SET @Threshold =Dateadd(MINUTE, -@worktime, Getdate());

SET @LoopCheckCount = 1

IF @record_block_flag = 1

 BEGIN

 IF NOT EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = Object_id(N'[dbo].[KDBlockInfoLog]')

 AND type IN (N'U'))

 --创建阻塞信息表

 BEGIN

 CREATE TABLE [dbo].KDBlockInfoLog

 (

 ID INT IDENTITY(1, 1) PRIMARY KEY,-- 自增ID作为主键

 blocktype NVARCHAR(200) NOT NULL,

 DBNAME NVARCHAR(200) NOT NULL,

 BlockEntityId BIGINT NOT NULL,

 resourceDescription [NVARCHAR](200),

 requestMode [NVARCHAR](200),

 requestSessionId INT,

 waitDuration_ms BIGINT,

 waitBatchSql NVARCHAR(max),

 waitSql NVARCHAR(max),

 blockingSessionId SMALLINT,

 blockingBatchSql NVARCHAR(max),

 createTime [DATETIME] NULL

);

 END

 --清理过期日志

 DELETE FROM [dbo].KDBlockInfoLog

 WHERE createTime < Dateadd(DAY, -@block_retention_time, Cast (Getdate() AS DATE))

 END

WHILE @LoopCheckCount <= 60

 BEGIN

 -- 构造需要杀死的会话ID列表，并准备KILL命令

 SELECT @KillCommands = 'KILL ' + Cast(session_id AS VARCHAR(10)) + ';'

 FROM (SELECT DISTINCT r.session_id

 FROM sys.dm_exec_requests r

 WHERE r.command = 'DBCC'

 AND r.start_time <= @Threshold) AS SessionsToKill; --执行时间超过@worktime的就杀掉

 -- 检查是否有需要执行的KILL命令

 IF Len(@KillCommands) > 0

 BEGIN

 --判断是否需要记录阻塞信息

 IF @record_block_flag = 1

 BEGIN

 INSERT INTO KDBlockInfoLog

 (blocktype,

 DBNAME,

 BlockEntityId,

 resourceDescription,

 requestMode,

 requestSessionId,

 waitDuration_ms,

 waitBatchSql,

 waitSql,

 blockingSessionId,

 blockingBatchSql,

 createTime)

 SELECT t1.resource_type AS [锁类型],

 Db_name(resource_database_id) AS [数据库名],

 t1.resource_associated_entity_id AS [阻塞资源对象],

 t1.resource_description AS [资源描述信息],

 t1.request_mode AS [请求的锁],

 t1.request_session_id AS [等待会话],

 t2.wait_duration_ms AS [等待时间],

 (SELECT [text]

 FROM sys.dm_exec_requests AS r WITH (NOLOCK)

 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle])

 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的批SQL],

 (SELECT Substring(qt.[text], r.statement_start_offset / 2, (CASE

 WHEN r.statement_end_offset = -1 THEN Len(CONVERT(NVARCHAR(max), qt.[text])) * 2

 ELSE r.statement_end_offset

 END) / 2)

 FROM sys.dm_exec_requests AS r WITH (NOLOCK)

 CROSS APPLY sys.Dm_exec_sql_text(r.[sql_handle]) AS qt

 WHERE r.session_id = t1.request_session_id) AS [等待会话执行的SQL],

 t2.blocking_session_id AS [阻塞会话],

 (SELECT [text]

 FROM sys.sysprocesses AS p

 CROSS APPLY sys.Dm_exec_sql_text(p.[sql_handle])

 WHERE p.spid = t2.blocking_session_id) AS [阻塞会话执行的批SQL],

						 getdate()

 FROM sys.dm_tran_locks AS t1 WITH (NOLOCK)

 INNER JOIN sys.dm_os_waiting_tasks AS t2 WITH (NOLOCK)

 ON t1.lock_owner_address = t2.resource_address

 END

 -- 执行KILL命令

 EXEC Sp_executesql

 @KillCommands;

 SET @message= N'Finished killing sessions. '

 + @KillCommands;

 SET @KillCommands = ''

 RAISERROR(@message,0,1);

 END

 ELSE

 BEGIN

 SET @message= N'No sessions to kill. ';

 RAISERROR(@message,0,1);

 END

 SET @LoopCheckCount = @LoopCheckCount + 1;

 WAITFOR DELAY '00:00:01'; --等待1秒

 END;

image44.emf
获取当前数据库最 大的50张表.txt

��ȡ��ǰ���ݿ�����50�ű�.txt
--获取当前数据库最大的50张表，按表大小排名

SELECT TOP 50 name AS TableName,

 Sum(Rowcnt) AS table_rows,

 Sum(ReservedKb) AS tablesize_kb,

 Sum(TableUsedKb) AS datasize_kb,

 Sum(UsedKb - TableUsedKb) AS indexsize_kb,

 Sum(TMPTABLESNum) AS tmptable_num

FROM (SELECT object_id,

 schema_id,

 CASE

 WHEN name LIKE 'TMP%' THEN 'TMPTABLES'

 ELSE name

 END NAME,

 CASE

 WHEN name LIKE 'TMP%' THEN 1

 ELSE 0

 END TMPTABLESNum,

 (SELECT Max(row_count)

 FROM sys.dm_db_partition_stats p WITH(nolock)

 WHERE p.object_id = t.object_id

 AND p.index_id < 2) AS Rowcnt,

 (SELECT Count(1)

 FROM dbo.syscolumns WITH(nolock)

 WHERE id = t.object_id) AS Columns,

 (SELECT Count(DISTINCT index_id)

 FROM sys.dm_db_partition_stats p WITH(nolock)

 WHERE p.object_id = t.object_id) AS Indexes,

 (SELECT Sum(length)

 FROM dbo.syscolumns WITH(nolock)

 WHERE id = t.object_id) AS RowLength,

 Isnull((SELECT Sum(reserved_page_count)

 FROM sys.dm_db_partition_stats p WITH(nolock)

 WHERE p.object_id = t.object_id), 0) * 8 + Isnull((SELECT Sum(reserved_page_count)

 FROM sys.dm_db_partition_stats p2 WITH(nolock)

 INNER JOIN sys.internal_tables it WITH(nolock)

 ON p2.object_id = it.object_id

 WHERE it.parent_id = t.object_id

 AND it.internal_type IN (202, 204, 207, 211,

 212, 213, 214, 215,

 216, 221, 222, 236)), 0) * 8 AS ReservedKb,

 Isnull((SELECT Sum(in_row_data_page_count

 + lob_used_page_count

 + row_overflow_used_page_count)

 FROM sys.dm_db_partition_stats p WITH(nolock)

 WHERE p.object_id = t.object_id

 AND p.index_id < 2), 0) * 8 AS TableUsedKb,

 Isnull((SELECT Sum(used_page_count)

 FROM sys.dm_db_partition_stats p WITH(nolock)

 WHERE p.object_id = t.object_id), 0) * 8 + Isnull((SELECT Sum(used_page_count)

 FROM sys.dm_db_partition_stats p2 WITH(nolock)

 INNER JOIN sys.internal_tables it WITH(nolock)

 ON p2.object_id = it.object_id

 WHERE it.parent_id = t.object_id

 AND it.internal_type IN (202, 204, 207, 211,

 212, 213, 214, 215,

 216, 221, 222, 236)), 0) * 8 AS UsedKb,

 create_date,

 modify_date

 FROM sys.tables t WITH(nolock)

 WHERE Type = 'U') A

GROUP BY name

ORDER BY 3 DESC

image1.png
NNV AVNN NN NN
NNV AVNN NN NN
NNV AVNN NN NN
NNV AVNN NN NN
NNV AVNN NN NN
NNV AVNN NN NN
AR

image2.png
@
°e Kingdee

